test_that("ddml_fpliv computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols)) ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 1) })#TEST_THAT test_that("ddml_fpliv computes with an ensemble procedure", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 1) })#TEST_THAT test_that("ddml_fpliv computes with stacking w/o enforcing the LIE", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = "ols", sample_folds = 3, cv_folds = 3, enforce_LIE = FALSE, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 1) })#TEST_THAT test_that("ddml_fpliv computes with multiple ensemble procedures", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("ddml_fpliv computes with custom weights", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("average"), cv_folds = 3, custom_ensemble_weights = diag(1, 2), sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 3) })#TEST_THAT test_that("ddml_fpliv computes with multiple ensembles w/o the LIE", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, enforce_LIE = FALSE, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("ddml_fpliv computes with multiple ensembles and sparse matrices", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z = as(Z, "sparseMatrix"), X = as(X, "sparseMatrix"), learners = learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("ddml_fpliv computes with different sets of learners", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols), list(fun = ols)) learners_DXZ <- list(list(fun = ols), list(fun = ols)) learners_DX <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, learners_DXZ = learners_DXZ, learners_DX = learners_DX, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("ddml_fpliv computes w/ ensembles & shortstack", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), shortstack = T, cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("ddml_fpliv computes w/ ensembles & shortstack but w/o the LIE ", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, enforce_LIE = FALSE, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 4) })#TEST_THAT test_that("summary.ddml_fpliv computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(what = ols) ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, sample_folds = 3, silent = T) capture_output({inf_res <- summary(ddml_fpliv_fit, type = "HC1")}) # Check output with expectations expect_equal(length(inf_res), 8) })#TEST_THAT test_that("ddml_fpliv computes with an ensemble procedure, multi D", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 2) })#TEST_THAT test_that("ddml_fpliv computes with an ensemble procedure w/o LIE, multi D", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, enforce_LIE = F, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 2) })#TEST_THAT test_that("ddml_fpliv computes with multiple ensemble procedures, multi D", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 8) })#TEST_THAT test_that("ddml_fpliv computes with ensemble procedures w/o LIE, multi D", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs*10), nobs, 10) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, enforce_LIE = F, silent = T) # Check output with expectations expect_equal(length(ddml_fpliv_fit$coef), 8) })#TEST_THAT