test_that("ddml_pliv computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(what = ols) # Compute DDML PLIV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 1) })#TEST_THAT test_that("ddml_pliv computes with an ensemble procedure", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 1) })#TEST_THAT test_that("ddml_pliv computes with multiple ensemble procedures", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "nnls1", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 5) })#TEST_THAT test_that("ddml_pliv computes with different sets of learners", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols), list(fun = ols)) learners_ZX <- list(list(fun = ols), list(fun = ols)) learners_DX <- list(list(fun = ols), list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, learners_ZX = learners_ZX, learners_DX = learners_DX, ensemble_type = c("ols", "nnls", "nnls1", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 5) })#TEST_THAT test_that("ddml_pliv computes with different sets of learners & shortstack", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols), list(fun = ols)) learners_ZX <- list(list(fun = ols), list(fun = ols)) learners_DX <- list(list(fun = ols), list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, learners_ZX = learners_ZX, learners_DX = learners_DX, ensemble_type = c("ols", "nnls", "nnls1", "singlebest", "average"), shortstack = T, cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 5) })#TEST_THAT test_that("summary.ddml_pliv computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1] y <- D + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(what = ols) # Compute DDML PLIV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, sample_folds = 3, silent = T) capture_output({summary(ddml_pliv_fit, type = "HC1")}) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 1) })#TEST_THAT test_that("ddml_pliv computes with a single model and multivariate D,Z", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1], rnorm(nobs)) Z <- cbind(Z, rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(what = ols) # Compute DDML PLIV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 2) })#TEST_THAT test_that("ddml_pliv computes with different ensembles and multivariate D,Z", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) Z <- matrix(rnorm(nobs), nobs, 1) UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2)) D <- cbind(X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1], rnorm(nobs)) Z <- cbind(Z, rnorm(nobs)) y <- rowSums(D) + X %*% runif(40) + UV[, 2] # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute LIE-conform DDML IV estimator ddml_pliv_fit <- ddml_pliv(y, D, Z, X, learners, ensemble_type = c("ols", "nnls", "nnls1", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_pliv_fit$coef), 10) })#TEST_THAT