spec <- tibble( .name = c("x", "y"), .value = "val", key = c("x", "y") ) spec1 <- tibble(.name = "x", .value = "val", key = "x") test_that("can pivot all cols to wide", { expect_equal( memdb_frame(key = c("x", "y", "z"), val = 1:3) %>% tidyr::pivot_wider(names_from = key, values_from = val) %>% collect(), tibble(x = 1, y = 2, z = 3) ) spec <- tibble( .name = c("x", "y", "z"), .value = "val", key = c("x", "y", "z") ) expect_snapshot( lazy_frame(key = c("x", "y", "z"), val = 1:3) %>% dbplyr_pivot_wider_spec(spec) ) }) test_that("non-pivoted cols are preserved", { df <- lazy_frame(a = 1, key = c("x", "y"), val = 1:2) expect_equal( dbplyr_pivot_wider_spec(df, spec) %>% op_vars(), c("a", "x", "y") ) }) test_that("implicit missings turn into explicit missings", { df <- memdb_frame(a = 1:2, key = c("x", "y"), val = 1:2) expect_equal( memdb_frame(a = 1:2, key = c("x", "y"), val = 1:2) %>% tidyr::pivot_wider(names_from = key, values_from = val) %>% collect(), tibble(a = 1:2, x = c(1, NA), y = c(NA, 2)) ) expect_snapshot( lazy_frame(a = 1:2, key = c("x", "y"), val = 1:2) %>% dbplyr_pivot_wider_spec(spec) ) }) test_that("error when overwriting existing column", { df <- memdb_frame( a = c(1, 1), key = c("a", "b"), val = c(1, 2) ) expect_snapshot(error = TRUE, tidyr::pivot_wider(df, names_from = key, values_from = val) ) }) test_that("`names_repair` happens after spec column reorganization (#1107)", { df <- memdb_frame( test = c("a", "b"), name = c("test", "test2"), value = c(1, 2) ) out <- tidyr::pivot_wider(df, names_repair = ~make.unique(.x)) %>% collect() expect_identical(out$test, c("a", "b")) expect_identical(out$test.1, c(1, NA)) expect_identical(out$test2, c(NA, 2)) }) test_that("minimal `names_repair` doesn't overwrite a value column that collides with key column (#1107)", { skip("`grouped_df()` needs a `name_repair` argument") # `collect.tbl_sql()` does not work with duplicated names df <- memdb_frame( test = c("a", "b"), name = c("test", "test2"), value = c(1, 2) ) out <- tidyr::pivot_wider(df, names_repair = "minimal") %>% collect() expect_identical(out[[1]], c("a", "b")) expect_identical(out[[2]], c(1, NA)) expect_identical(out[[3]], c(NA, 2)) }) test_that("grouping is preserved", { df <- lazy_frame(a = 1, key = "x", val = 2) expect_equal( df %>% dplyr::group_by(a) %>% dbplyr_pivot_wider_spec(spec1) %>% group_vars(), "a" ) }) # https://github.com/tidyverse/tidyr/issues/804 test_that("column with `...j` name can be used as `names_from`", { df <- memdb_frame(...8 = c("x", "y", "z"), val = 1:3) pv <- tidyr::pivot_wider(df, names_from = ...8, values_from = val) %>% collect() expect_named(pv, c("x", "y", "z")) }) # column names ------------------------------------------------------------- test_that("dbplyr_build_wider_spec can handle multiple columns", { df <- memdb_frame( x = c("X", "Y"), y = 1:2, a = 1:2, b = 1:2 ) expect_equal( dbplyr_build_wider_spec(df, x:y, a:b), tibble::tribble( ~.name, ~.value, ~x, ~y, "a_X_1", "a", "X", 1L, "a_Y_2", "a", "Y", 2L, "b_X_1", "b", "X", 1L, "b_Y_2", "b", "Y", 2L ) ) }) test_that("pivot_wider handles NA column names consistent with tidyr", { df <- memdb_frame( id = "id", x = 1:3, y = c("A", NA, "B") ) expect_equal( df %>% tidyr::pivot_wider(names_from = y, values_from = x) %>% collect(), df %>% collect() %>% tidyr::pivot_wider(names_from = y, values_from = x) ) }) # keys --------------------------------------------------------- test_that("can override default keys", { df <- tibble::tribble( ~row, ~name, ~var, ~value, 1, "Sam", "age", 10, 2, "Sam", "height", 1.5, 3, "Bob", "age", 20, ) df_db <- memdb_frame(!!!df) expect_equal( df_db %>% tidyr::pivot_wider(id_cols = name, names_from = var, values_from = value) %>% collect(), tibble::tribble( ~name, ~age, ~height, "Bob", 20, NA, "Sam", 10, 1.5 ) ) }) test_that("`id_cols = everything()` excludes `names_from` and `values_from`", { df <- memdb_frame(key = "x", name = "a", value = 1L) expect_identical( tidyr::pivot_wider(df, id_cols = everything()) %>% collect(), tibble(key = "x", a = 1L) ) spec <- dbplyr_build_wider_spec(df) expect_identical( dbplyr_pivot_wider_spec(df, spec, id_cols = everything()) %>% collect(), tibble(key = "x", a = 1L) ) }) test_that("pivoting a zero row data frame drops `names_from` and `values_from` (#1249)", { df <- memdb_frame(key = character(), name = character(), value = integer()) expect_identical( tidyr::pivot_wider(df, names_from = name, values_from = value) %>% collect(), tibble(key = character()) ) }) test_that("known bug - building a wider spec with a zero row data frame loses `values_from` info (#1249)", { # We can't currently change this behavior in `pivot_wider_spec()`, # for fear of breaking backwards compatibility df <- memdb_frame(key = character(), name = character(), value = integer()) # Building the spec loses the fact that `value` was specified as `values_from`, # which would normally be in the `spec$.value` column spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = value) # So pivoting with this spec accidentally keeps `value` around expect_identical( dbplyr_pivot_wider_spec(df, spec) %>% collect(), tibble(key = character(), value = integer()) ) # If you specify `id_cols` to be the `key` column, it works right expect_identical( dbplyr_pivot_wider_spec(df, spec, id_cols = key) %>% collect(), tibble(key = character()) ) # But `id_cols = everything()` won't work as intended, because we can't know # to remove `value` from `names(data)` before computing the tidy-selection expect_identical( dbplyr_pivot_wider_spec(df, spec, id_cols = everything()) %>% collect(), tibble(key = character(), value = integer()) ) }) # non-unique keys --------------------------------------------------------- test_that("values_fn can be a single function", { suppressWarnings(check_na_rm(FALSE)) df <- lazy_frame(a = c(1, 1, 2), key = c("x", "x", "x"), val = c(1, 10, 100)) expect_snapshot( suppressWarnings(dbplyr_pivot_wider_spec(df, spec1, values_fn = sum)) ) }) test_that("values_fn can be a formula", { df <- lazy_frame(a = c(1, 1, 2), key = c("x", "x", "x"), val = c(1, 10, 100)) expect_snapshot(dbplyr_pivot_wider_spec(df, spec1, values_fn = ~ sum(.x, na.rm = TRUE))) }) test_that("values_fn can be a named list", { df <- lazy_frame( key = c("x", "x"), a = c(1, 2), b = c(3, 4) ) spec <- tibble( .name = c("a_x", "b_x"), .value = c("a", "b"), key = "x" ) dbplyr_pivot_wider_spec( df, spec, values_fn = list(a = sum, b = ~ sum(.x, na.rm = TRUE)) ) # must specify `values_fn` for every column expect_snapshot_error( dbplyr_pivot_wider_spec(df, spec, values_fn = list(a = sum)) ) # no function must be `NULL` expect_snapshot_error( dbplyr_pivot_wider_spec(df, spec, values_fn = list(a = sum, b = NULL)) ) }) test_that("values_fn cannot be NULL", { df <- lazy_frame(a = 1, key = "x", val = 1) expect_snapshot(error = TRUE, dbplyr_pivot_wider_spec(df, spec1, values_fn = NULL)) }) # unused ------------------------------------------------------------------- test_that("`unused_fn` can summarize unused columns (#990)", { df <- memdb_frame( id = c(1, 1, 2, 2), unused1 = c(1, 2, 4, 3), unused2 = c(11, 12, 14, 13), name = c("a", "b", "a", "b"), value = c(1, 2, 3, 4) ) # By name suppressWarnings( res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = list(unused1 = max)) %>% collect() ) expect_equal(colnames(res), c("id", "a", "b", "unused1")) expect_identical(res$unused1, c(2, 4)) # Globally suppressWarnings( res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = min) %>% collect() ) expect_equal(colnames(res), c("id", "a", "b", "unused1", "unused2")) expect_identical(res$unused1, c(1, 3)) expect_identical(res$unused2, c(11, 13)) }) test_that("`unused_fn` works with anonymous functions", { df <- memdb_frame( id = c(1, 1, 2, 2), unused = c(1, NA, 4, 3), name = c("a", "b", "a", "b"), value = c(1, 2, 3, 4) ) res <- tidyr::pivot_wider(df, id_cols = id, unused_fn = ~mean(.x, na.rm = TRUE)) %>% collect() expect_identical(res$unused, c(1, 3.5)) }) test_that("`unused_fn` is validated", { df <- memdb_frame(id = 1, unused = 1, name = "a", value = 1) expect_snapshot( (expect_error(tidyr::pivot_wider(df, id_cols = id, unused_fn = 1))) ) }) # can fill missing cells -------------------------------------------------- test_that("can fill in missing cells", { spec <- tibble( .name = c("x", "y"), .value = "value", name = c("x", "y") ) df <- memdb_frame(g = c(1, 2), name = c("x", "y"), value = c(1, 2)) df_lazy <- lazy_frame(g = c(1, 2), name = c("x", "y"), value = c(1, 2)) expect_equal(tidyr::pivot_wider(df) %>% pull(x), c(1, NA)) expect_equal(tidyr::pivot_wider(df, values_fill = 0) %>% pull(x), c(1, 0)) expect_snapshot(dbplyr_pivot_wider_spec(df_lazy, spec, values_fill = 0)) expect_equal( tidyr::pivot_wider(df, values_fill = list(value = 0)) %>% pull(x), c(1, 0) ) expect_snapshot( dbplyr_pivot_wider_spec( df_lazy, spec, values_fill = list(value = 0) ) ) }) test_that("values_fill only affects missing cells", { df <- memdb_frame(g = c(1, 2), name = c("x", "y"), value = c(1, NA)) dbplyr_build_wider_spec(df) out <- tidyr::pivot_wider(df, values_fill = 0) %>% collect() expect_equal(out$y, c(0, NA)) }) test_that("values_fill is checked", { lf <- lazy_frame(g = c(1, 2), name = c("x", "y"), value = c(1, NA)) spec <- tibble( .name = c("x", "y"), .value = "value", name = .name ) expect_snapshot( error = TRUE, dbplyr_pivot_wider_spec(lf, spec, values_fill = 1:2) ) }) # multiple values ---------------------------------------------------------- test_that("can pivot from multiple measure cols", { df <- memdb_frame(row = 1, var = c("x", "y"), a = 1:2, b = 3:4) pv <- tidyr::pivot_wider(df, names_from = var, values_from = c(a, b)) %>% collect() expect_named(pv, c("row", "a_x", "a_y", "b_x", "b_y")) expect_equal(pv$a_x, 1) expect_equal(pv$b_y, 4) }) test_that("column order in output matches spec", { df <- tibble::tribble( ~hw, ~name, ~mark, ~pr, "hw1", "anna", 95, "ok", "hw2", "anna", 70, "meh", ) # deliberately create weird order sp <- tibble::tribble( ~hw, ~.value, ~.name, "hw1", "mark", "hw1_mark", "hw1", "pr", "hw1_pr", "hw2", "pr", "hw2_pr", "hw2", "mark", "hw2_mark", ) pv <- dbplyr_pivot_wider_spec(lazy_frame(!!!df), sp) expect_equal(pv %>% op_vars(), c("name", sp$.name)) }) test_that("cannot pivot lazy frames", { expect_snapshot(error = TRUE, tidyr::pivot_wider(lazy_frame(name = "x", value = 1))) }) # multiple names ---------------------------------------------------------- test_that("can pivot multiple from multiple names", { x <- tibble( seq = c(1, 1, 2, 2), name = rep(c("id", "name"), 2), value = c("01", "curie", "02", "arrhenius") ) expect_equal( memdb_frame(x) %>% tidyr::pivot_wider( names_from = c(name, seq), values_from = value ) %>% collect(), tibble(id_1 = "01", name_1 = "curie", id_2 = "02", name_2 = "arrhenius") ) }) # pass through arguments -------------------------------------------------- test_that("can vary `names_from` values slowest (#839)", { df <- memdb_frame( name = c("name1", "name2"), value1 = c(1, 2), value2 = c(4, 5) ) spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = c(value1, value2)) expect_identical( spec$.name, c("value1_name1", "value1_name2", "value2_name1", "value2_name2") ) spec <- dbplyr_build_wider_spec(df, names_from = name, values_from = c(value1, value2), names_vary = "slowest") expect_identical( spec$.name, c("value1_name1", "value2_name1", "value1_name2", "value2_name2") ) }) test_that("`names_expand` does a cartesian expansion of `names_from` columns (#770)", { df <- memdb_frame(name1 = c("a", "b"), name2 = c("c", "d"), value = c(1, 2)) spec <- dbplyr_build_wider_spec(df, names_from = c(name1, name2), names_expand = TRUE) expect_identical(spec$.name, c("a_c", "a_d", "b_c", "b_d")) }) # checks arguments -------------------------------------------------------- test_that("`names_from` must be supplied if `name` isn't in `data` (#1240)", { df <- memdb_frame(key = "x", val = 1) expect_snapshot((expect_error(tidyr::pivot_wider(df, values_from = val)))) }) test_that("`values_from` must be supplied if `value` isn't in `data` (#1240)", { df <- memdb_frame(key = "x", val = 1) expect_snapshot((expect_error(tidyr::pivot_wider(df, names_from = key)))) }) test_that("`names_from` must identify at least 1 column (#1240)", { df <- memdb_frame(key = "x", val = 1) expect_snapshot( (expect_error(tidyr::pivot_wider(df, names_from = starts_with("foo"), values_from = val))) ) }) test_that("`values_from` must identify at least 1 column (#1240)", { df <- memdb_frame(key = "x", val = 1) expect_snapshot( (expect_error(tidyr::pivot_wider(df, names_from = key, values_from = starts_with("foo")))) ) }) test_that("`id_expand` must be FALSE", { df <- lazy_frame(name = "x", value = 1) expect_snapshot( (expect_error(tidyr::pivot_wider(df, id_expand = TRUE))) ) })