test_that("data_partition works as expected", { # not supported expect_error( data_partition(new.env()), "`data` must be a data frame" ) # to be coerced to data frames expect_snapshot(data_partition(letters, seed = 123)) # validation checks expect_warning( data_partition(iris, 0.7, row_id = "Species"), "exists" ) expect_warning(expect_warning( data_partition(iris, c(0.7, 0.3), row_id = "Species"), "generated" )) # values out <- data_partition(mtcars, proportion = 0.8, seed = 123) expect_identical( out$p_0.8$.row_id, c( 1L, 3L, 4L, 5L, 7L, 8L, 9L, 10L, 11L, 14L, 15L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 26L, 27L, 28L, 29L, 30L, 31L, 32L ) ) expect_identical( colnames(out$p_0.8), c( "mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb", ".row_id" ) ) expect_identical( lapply(out, nrow), list(p_0.8 = 26L, test = 6L) ) # data frames data(iris) expect_snapshot(str(data_partition(iris, proportion = 0.7, seed = 123))) expect_snapshot(str(data_partition(iris, proportion = c(0.2, 0.5), seed = 123))) expect_snapshot(str(data_partition(iris, proportion = 0.7, group = "Species", seed = 123))) expect_snapshot(str(data_partition(iris, proportion = c(0.2, 0.5), group = "Species", seed = 123))) }) test_that("data_partition warns if no testing set", { expect_warning( data_partition(iris, proportion = 1), "sums up to 1" ) expect_warning( data_partition(iris, proportion = c(0.5, 0.5)), "sums up to 1" ) }) test_that("data_partition errors if values in proportion not between 0 and 1", { expect_error( data_partition(iris, proportion = 1.3), "cannot be higher" ) expect_error( data_partition(iris, proportion = c(0.5, 0.6)), "cannot be higher" ) expect_error( data_partition(iris, proportion = c(1.3, -1)), "cannot be negative" ) expect_error( data_partition(iris, proportion = -1), "cannot be negative" ) }) test_that("data_partition warns if row_id already exists", { iris2 <- iris iris2[[".row_id"]] <- "A" expect_warning( data_partition(iris2, proportion = 0.5), "already exists" ) iris2[["foo"]] <- "A" expect_warning( data_partition(iris2, proportion = 0.5, row_id = "foo"), "already exists" ) part1 <- data_partition(iris, proportion = 0.5, seed = 123) part2 <- suppressWarnings(data_partition(iris2, proportion = 0.5, seed = 123)) expect_identical( part1$p_0.5[1:5], part2$p_0.5[1:5] ) })