test_that("test_create_descriptive_summ", { withr::local_options(dataquieR.CONDITIONS_WITH_STACKTRACE = TRUE, dataquieR.ERRORS_WITH_CALLER = TRUE, dataquieR.WARNINGS_WITH_CALLER = TRUE, dataquieR.MESSAGES_WITH_CALLER = TRUE) skip_on_cran() skip_if_offline(host = "dataquality.qihs.uni-greifswald.de") target <- withr::local_tempdir("testdessummary") sd1 <- head(prep_get_data_frame("https://dataquality.qihs.uni-greifswald.de/extdata/fortests/study_data.RData", keep_types = TRUE), 20) expect_message2( des_summary(study_data = sd1, meta_data_v2 = "https://dataquality.qihs.uni-greifswald.de/extdata/fortests/meta_data_v2.xlsx")) sd1 <- sd1[, 4:7] desc1 <- des_summary(study_data = sd1) expect_equal(sum(as.numeric(desc1$SummaryData$Mean)), 298.2) desc2 <- des_summary(resp_vars = c("v00003", "v00004"), study_data = sd1) expect_equal(sum(as.numeric(desc2$SummaryData$Mean)), 171.75) expect_equal(sum(as.numeric(desc2$SummaryData$SD)), 10.932) expect_equal(sum(as.numeric(desc2$SummaryData$CV)), 13.27) expect_equal(sum(as.numeric(desc2$SummaryData$Kurtosis)), -2.5740) expect_equal(sum(as.numeric(desc2$SummaryData$Median)), 170.5) }) test_that("test_create_descriptive_summ_to", { skip_on_cran() # slow skip_if_offline(host = "dataquality.qihs.uni-greifswald.de") study_data <- prep_get_data_frame("https://dataquality.qihs.uni-greifswald.de/extdata/fortests/study_data.RData", keep_types = TRUE) prep_load_workbook_like_file("https://dataquality.qihs.uni-greifswald.de/extdata/fortests/meta_data_v2.xlsx") meta_data <- prep_get_data_frame("item_level") set.seed(12345) day_course <- unlist(lapply( 0:23, function(h) { list( hms::hms(hours = h, minutes = 3), hms::hms(hours = h, minutes = 13), hms::hms(hours = h, minutes = 24), hms::hms(hours = h, minutes = 30), hms::hms(hours = h, minutes = 50) ) } ), recursive = FALSE) probs <- rep(c(.7, .2, .05, .04, 0.01), 24) times <- sample(x = day_course, prob = probs, size = nrow(study_data), replace = TRUE) study_data$v02000 <- times meta_data <- util_rbind( meta_data, data.frame( stringsAsFactors = FALSE, VAR_NAMES = "v02000", LABEL = "ADMIS_TM_0", DATA_TYPE = DATA_TYPES$TIME, SCALE_LEVEL = SCALE_LEVELS$INTERVAL, VALUE_LABELS = NA_character_, STANDARDIZED_VOCABULARY_TABLE = NA_character_, MISSING_LIST_TABLE = NA_character_, HARD_LIMITS = "[09:00:00;18:00:00]", DETECTION_LIMITS = NA_character_, SOFT_LIMITS = NA_character_, DISTRIBUTION = NA_character_, DECIMALS = NA_character_, DATA_ENTRY_TYPE = NA_character_, GROUP_VAR_OBSERVER = NA_character_, GROUP_VAR_DEVICE = NA_character_, TIME_VAR = NA_character_, STUDY_SEGMENT = "STUDY", PART_VAR = "PART_STUDY", VARIABLE_ROLE = "intro", VARIABLE_ORDER = "54", LONG_LABEL = "Admission time", ELEMENT_HOMOGENITY_CHECKTYPE = NA_character_, UNIVARIATE_OUTLIER_CHECKTYPE = NA_character_, N_RULES = "4", LOCATION_METRIC = NA_character_, LOCATION_RANGE = NA_character_, PROPORTION_RANGE = NA_character_, REPEATED_MEASURES_VARS = NA_character_, REPEATED_MEASURES_GOLDSTANDARD = NA_character_, CO_VARS = NA_character_ ) ) r <- des_summary( resp_vars = "ADMIS_TM_0", study_data = study_data, label_col = LABEL, meta_data = meta_data) })