test_that("snapshot stats_list plots", { a_model <- dmc_dm(dx = .005, dt = .005, t_max = 2) data <- simulate_data(a_model, n = 5000, seed = 1) obs_data(a_model) <- data all_stats <- calc_stats(a_model, c("cafs", "quantiles", "delta_funs"), minuends = "incomp", subtrahends = "comp" ) plot_all <- function() { plot(all_stats, mfrow = c(1, 3)) } vdiffr::expect_doppelganger( title = "cafs_quantiles_delta", fig = plot_all() ) }) test_that("snapshot the traces plot", { a_model <- dmc_dm(dx = .005, dt = .005, t_max = 2) traces_obj <- simulate_traces(a_model, k = 1, sigma = 0) plot_all_traces <- function() { plot(traces_obj, col = c("green", "red"), col_b = "blue", xlim = c(-0.1, 0.4), ylim = c(-0.7, 0.7), xlab = "foo", ylab = "bar", lty = 2, legend = c("hoo", "ha"), legend_pos = "bottomright" ) } vdiffr::expect_doppelganger( title = "all_traces", fig = plot_all_traces() ) plot_one_trace <- function() { plot(traces_obj[[1]], col = c("green"), col_b = "blue", xlim = c(-0.1, 0.4), ylim = c(-0.7, 0.7), xlab = "foo", ylab = "bar", lty = 2 ) } vdiffr::expect_doppelganger( title = "one_traces", fig = plot_one_trace() ) }) test_that("snapshot for coefs.dm plot", { all_fits <- load_fits_ids( path = test_path("fixtures"), fit_procedure_name = "test_case_saved", check_data = F ) all_prms_1 <- coef(all_fits) all_prms_2 <- coef(all_fits, select_unique = F) plot_hists1 <- function() { hist(all_prms_1, main = c("foo", "bar", "ho"), colors = "blue", xlab = "test" ) } vdiffr::expect_doppelganger( title = "unique_prms_hist", fig = plot_hists1() ) plot_hists2 <- function() { hist(all_prms_2, alpha = 0.2, colors = c("green", "red", "blue")) } vdiffr::expect_doppelganger( title = "cond_prms_hist", fig = plot_hists2() ) }) test_that("snapshot for plot.drift_dm", { a_model <- ssp_dm() plot_model1 <- function() { plot(a_model, conds = "comp", col = "green", xlim = c(0, 0.5), legend = "foo", legend_pos = "bottomright" ) } vdiffr::expect_doppelganger( title = "plot_model_one_cond", fig = plot_model1() ) a_model <- dmc_dm() # for integral check comp_funs(a_model)[["x_fun"]] <- x_dirac_0 solver(a_model) <- "im_zero" plot_model2 <- function() { plot(a_model, xlim = c(0, 0.5)) } vdiffr::expect_doppelganger( title = "plot_model", fig = plot_model2() ) })