# # Fixed version of morse function, original doesn't work in morse package # version <= 3.2.5 # Surv.SD_Cext <- function(Cw, time, kk, kd, z, hb) { time.prec = dplyr::lag(time, 1) ; time.prec[1] = time[1] # time[1] = tprec[1] # Using log transfomration: log(a+b) = log(a) + log(1+b/a) may prevent the numerical issues raised by exponential diff.int = (exp(time %*% t(kd)) + exp(time.prec %*% t(kd)) )*Cw/2 * (time-time.prec) #OK time[1]-tprec[1] = 0 D = kd * exp(-kd %*% t(time)) * t(apply(diff.int, 2, cumsum)) lambda = kk * pmax(D-z,0) + hb # the pmax function is important here for elementwise maximum with 0 and D[i,j]-z ATTENTION: pmax(0,D) != pmax(D,0) ## fix for new behaviour of dplyr::lag() lambda.prec = dplyr::lag(lambda[1,], 1 ) ; lambda.prec[1] = lambda[1] #lambda.prec = lag(lambda, 1 ) ; lambda.prec[1] = lambda[1] ## fix end int.lambda = t(t((lambda + lambda.prec)/2) * (time-time.prec)) S <- exp(-t(apply(int.lambda,1,cumsum))) return(S) } test_that("GUTS-RED constant exposure", { # GUTS model verification as conducted in # EFSA Scientific Opinion on TKTD models, pp. 36 # doi:10.2903/j.efsa.2018.5377 # # Begin EFSA code: 01.GUTS-implementation-check.R # exp <- data.frame(seq(0,7,0.01), c(rep(5,401), rep(0,300))) colnames(exp) <- c("time","conc") MF <- 1 # Multiplication factor of the exposure profile kD <- 0.3 # unit: [time^-1] hb <- 0 # background mortality rate [time^-1] SOT_SD <- Surv.SD_Cext ## FIXED, morse function contains a bug preventing calculations atm #SOT_SD <- morse:::Surv.SD_Cext bw <- 0.5 # unit: 1/[D] zw <- 2.5 # unit: [D] SOT_SD_cst_simu <- SOT_SD(Cw=exp$conc, time=exp$time, kk=bw, kd=kD, z=zw, hb=hb) SOT_IT <- morse:::Surv.IT_Cext mw <- 2.5 # unit: [D] beta <- 2 # dimensionless SOT_IT_cst_simu <- SOT_IT(Cw=exp$conc, time=exp$time, kd=kD, hb=hb, alpha=mw, beta=beta) # # EFSA code end # # Compare with morse's standard prediction GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) %>% survival(approx="constant") -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) %>% survival(approx="constant") -> gsd expect_lt(mae(SOT_IT_cst_simu[1,],git$survival), 1e-5, "IT:S approx") expect_lt(rmse(SOT_IT_cst_simu[1,],git$survival), 1e-5, "IT:S approx") expect_lt(mae(SOT_SD_cst_simu[1,],gsd$survival), 1e-5, "SD:S approx") expect_lt(rmse(SOT_SD_cst_simu[1,],gsd$survival), 1e-5, "SD:S approx") # Compare with morse's ODE prediction # Fit of our approach should be better as morse will also use the ODE solver GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) %>% survival(approx="linear", hmax=NULL) -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) %>% survival(approx="linear", hmax=NULL) -> gsd morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD,z=zw,hb=hb,mcmc_size=1) -> ode.sd morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta,mcmc_size=1) -> ode.it expect_lt(mae(ode.it[,1],git$survival), 1e-10, "IT:S ode") expect_lt(rmse(ode.it[,1],git$survival), 1e-10, "IT:S ode") expect_lt(mae(ode.sd[,1],gsd$survival), 1e-10, "SD:D ode") expect_lt(rmse(ode.sd[,1],gsd$survival), 1e-10, "SD:D ode") }) test_that("GUTS-RED time-variable exposure", { # GUTS model verification as conducted in # EFSA Scientific Opinion on TKTD models, pp. 36 # doi:10.2903/j.efsa.2018.5377 # # Begin EFSA code: 01.GUTS-implementation-check.R # exp <- data.frame(seq(0,14,0.01), c(rep(0,301), rep(5,200), rep(0,900))) colnames(exp) <- c("time","conc") kD <- 0.3 # unit: [time^-1] hb <- 0 # background mortality rate [time^-1] SOT_IT <- morse:::Surv.IT_Cext SOT_SD <- Surv.SD_Cext ## FIXED, morse function contains a bug preventing calculations atm #SOT_SD <- morse:::Surv.SD_Cext bw <- 0.5 # unit: 1/[D] zw <- 2.5 # unit: [D] mw <- 2.5 # unit: [D] beta <- 2 # dimensionless # # EFSA code end # # Simulate GUTS-RED-IT for (i in 2:50){ MF <- i morse:::SurvIT_ode(exp$conc*MF,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta,mcmc_size=1) -> ode.it GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(data.frame(t=exp$time,p=exp$conc*MF)) %>% survival(hmax=NULL) -> git expect_lt(nmae(ode.it[,1],git$survival), 1e-5, paste0("IT:S, MF=",MF)) expect_lt(nrmse(ode.it[,1],git$survival), 1e-5, paste0("IT:S, MF=",MF)) } # Simulate GUTS-RED-SD for (i in 2:50){ MF <- i morse:::SurvSD_ode(exp$conc*MF,exp$time,replicate=1,kk=bw,kd=kD,z=zw,hb=hb,mcmc_size=1) -> ode.sd GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(data.frame(t=exp$time,p=exp$conc*MF)) %>% survival(hmax=NULL) -> gsd expect_lt(nmae(ode.sd[,1],gsd$survival), 1e-5, paste0("SD:S, MF=",MF)) expect_lt(nrmse(ode.sd[,1],gsd$survival), 1e-5, paste0("SD:S, MF=",MF)) } }) test_that("GUTS-RED extreme cases", { # GUTS model verification as conducted in # EFSA Scientific Opinion on TKTD models, pp. 36 # doi:10.2903/j.efsa.2018.5377 # # Begin EFSA code: 01.GUTS-implementation-check.R # MF <- 1 kD <- 0.3 # unit: [time^-1] hb <- 0 # background mortality rate bw <- 0.5 # unit: 1/[D] zw <- 2.5 # unit: [D] mw <- 2.5 # unit: [D] beta <- 2 # dimensionless SOT_SD <- Surv.SD_Cext ## FIXED, morse function contains a bug preventing calculations atm #SOT_SD <- morse:::Surv.SD_Cext SOT_IT <- morse:::Surv.IT_Cext # Zero exposure (conc=0) exp <- data.frame(seq(0,7,0.01), rep(0,701)) colnames(exp) <- c("time","conc") SOT_SD_simu_0 <- SOT_SD(Cw=exp$conc, time=exp$time, kk=bw, kd=kD, z=zw, hb=hb) SOT_IT_simu_0 <- SOT_IT(Cw=exp$conc, time=exp$time, kd=kD,hb=hb, alpha=mw, beta=beta) # # EFSA code end # morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD,z=zw,hb=hb,mcmc_size=1) -> ode.sd morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta,mcmc_size=1) -> ode.it GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) %>% survival(approx="constant", hmax=NULL) -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) %>% survival(approx="constant", hmax=NULL) -> gsd expect_lt(nmae(SOT_IT_simu_0[1,],git$survival), 1e-10, "IT:S approx,zero exp") expect_lt(nrmse(SOT_IT_simu_0[1,],git$survival), 1e-10, "IT:S approx,zero exp") expect_lt(nmae(SOT_SD_simu_0[1,],gsd$survival), 1e-10, "SD:S approx,zero exp") expect_lt(nrmse(SOT_SD_simu_0[1,],gsd$survival), 1e-10, "SD:S approx,zero exp") expect_lt(nmae(ode.it[,1],git$survival), 1e-10, "IT:S ODE,zero exp") expect_lt(nrmse(ode.it[,1],git$survival), 1e-10, "IT:S ODE,zero exp") expect_lt(nmae(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") expect_lt(nrmse(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") rm(git,gsd,ode.it,ode.sd,exp,SOT_IT_simu_0,SOT_SD_simu_0) # # Begin EFSA code: 01.GUTS-implementation-check.R # # High exposure over 4 days (conc=100) exp <- data.frame(seq(0,7,0.01), c(rep(100,401), rep(0,300))) colnames(exp) <- c("time","conc") SOT_SD_simu_100 <- SOT_SD(Cw=exp$conc, time=exp$time, kk=bw, kd=kD, z=zw, hb=hb) SOT_IT_simu_100 <- SOT_IT(Cw=exp$conc, time=exp$time, kd=kD,hb=hb, alpha=mw, beta=beta) # # EFSA code end # morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD,z=zw,hb=hb,mcmc_size=1) -> ode.sd morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta,mcmc_size=1) -> ode.it GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) %>% survival(approx="constant", hmax=NULL) -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) %>% survival(approx="constant", hmax=NULL) -> gsd ## morse's approximations have low precision expect_lt(nmae(SOT_IT_simu_100[1,],git$survival), 1e-5, "IT:S approx,zero exp") expect_lt(nrmse(SOT_IT_simu_100[1,],git$survival), 1e-5, "IT:S approx,zero exp") expect_lt(nmae(SOT_SD_simu_100[1,],gsd$survival), 1e-3, "SD:S approx,zero exp") expect_lt(nrmse(SOT_SD_simu_100[1,],gsd$survival), 1e-3, "SD:S approx,zero exp") ## morse's ODE models fare much better expect_lt(nmae(ode.it[,1],git$survival), 1e-6, "IT:S ODE,zero exp") expect_lt(nrmse(ode.it[,1],git$survival), 1e-6, "IT:S ODE,zero exp") expect_lt(nmae(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") expect_lt(nrmse(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") rm(git,gsd,ode.it,ode.sd,exp,SOT_IT_simu_100,SOT_SD_simu_100) # # Begin EFSA code: 01.GUTS-implementation-check.R # # Only background mortality (conc=0, hb=0.05) hb <- 0.05 exp <- data.frame(seq(0,7,0.01), rep(0,701)) colnames(exp) <- c("time","conc") SOT_SD_simu_BG <- SOT_SD(Cw=exp$conc, time=exp$time, kk=bw,kd=kD, z=zw, hb=hb) SOT_IT_simu_BG <- SOT_IT(Cw=exp$conc, time=exp$time, kd=kD,hb=hb, alpha=mw, beta=beta) # # EFSA code end # morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD,z=zw,hb=hb,mcmc_size=1) -> ode.sd morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta,mcmc_size=1) -> ode.it GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) %>% survival(approx="constant") -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) %>% survival(approx="constant") -> gsd expect_lt(nmae(SOT_IT_simu_BG[1,],git$survival), 1e-10, "IT:S approx,zero exp") expect_lt(nrmse(SOT_IT_simu_BG[1,],git$survival), 1e-10, "IT:S approx,zero exp") expect_lt(nmae(SOT_SD_simu_BG[1,],gsd$survival), 1e-10, "SD:S approx,zero exp") expect_lt(nrmse(SOT_SD_simu_BG[1,],gsd$survival), 1e-10, "SD:S approx,zero exp") expect_lt(nmae(ode.it[,1],git$survival), 1e-10, "IT:S ODE,zero exp") expect_lt(nrmse(ode.it[,1],git$survival), 1e-10, "IT:S ODE,zero exp") expect_lt(nmae(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") expect_lt(nrmse(ode.sd[,1],gsd$survival), 1e-10, "SD:S ODE,zero exp") rm(git,gsd,ode.it,ode.sd,exp,SOT_IT_simu_BG,SOT_SD_simu_BG) }) test_that("GUTS-RED sensitivity analysis", { # GUTS model verification as conducted in # EFSA Scientific Opinion on TKTD models, pp. 36 # doi:10.2903/j.efsa.2018.5377 # # Begin EFSA code: 01.GUTS-implementation-check.R # kD <- 0.3 # unit: [time^-1] hb <- 0 # background mortality rate bw <- 0.5 # unit: 1/[D] zw <- 2.5 # unit: [D] mw <- 2.5 # unit: [D] beta <- 2 # dimensionless exp <- data.frame(seq(0,5,0.01), c(rep(0,301), rep(15,200))) colnames(exp) <- c("time","conc") percent <- -75:100 # # EFSA code end # GUTS_RED_IT() %>% set_param(c(kd=kD,hb=hb,alpha=mw,beta=beta)) %>% set_exposure(exp) -> git GUTS_RED_SD() %>% set_param(c(kd=kD,hb=hb,kk=bw,z=zw)) %>% set_exposure(exp) -> gsd # Variation of kD kD <- 0.3*(1+percent/100) for (i in 1:length(percent)){ morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD[i],hb=hb,alpha=mw,beta=beta,mcmc_size=1) %>% tail(1) -> ode.it git %>% set_param(c(kd=kD[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.it expect_lt(nmae(ode.it[,1],e.it$survival), 1e-5, "IT:S ODE,kd varying") morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD[i],z=zw,hb=hb,mcmc_size=1) %>% tail(1) -> ode.sd gsd %>% set_param(c(kd=kD[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.sd expect_lt(nmae(ode.sd[,1],e.sd$survival), 1e-5, "SD:S ODE,kd varying") } rm(i,ode.sd,ode.it,e.it,e.sd) # Variation of bw (model SD) kD <- 0.3 bw <- 0.5*(1+percent/100) for (i in 1:length(percent)){ morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw[i],kd=kD,z=zw,hb=hb,mcmc_size=1) %>% tail(1) -> ode.sd gsd %>% set_param(c(kk=bw[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.sd expect_lt(nmae(ode.sd[,1],e.sd$survival), 1e-5, "SD:S ODE,kk varying") } rm(i,ode.sd,e.sd) # Variation of zw (model SD) bw <- 0.5 zw <- 2.5*(1+percent/100) for (i in 1:length(percent)){ morse:::SurvSD_ode(exp$conc,exp$time,replicate=1,kk=bw,kd=kD,z=zw[i],hb=hb,mcmc_size=1) %>% tail(1) -> ode.sd gsd %>% set_param(c(z=zw[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.sd ## !! reduced precision !! expect_lt(nmae(ode.sd[,1],e.sd$survival), 5e-5, "SD:S ODE,z varying") } rm(i,ode.sd,e.sd) # Variation of mw (model IT) zw <- 2.5 mw <- 2.5*(1+percent/100) for (i in 1:length(percent)){ morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw[i],beta=beta,mcmc_size=1) %>% tail(1) -> ode.it git %>% set_param(c(alpha=mw[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.it expect_lt(nmae(ode.it[,1],e.it$survival), 1e-5, "IT:S ODE,alpha varying") } rm(i,ode.it,e.it) # Variation of beta (model IT) mw <- 2.5 beta <- 2*(1+percent/100) for (i in 1:length(percent)){ morse:::SurvIT_ode(exp$conc,exp$time,replicate=1,kd=kD,hb=hb,alpha=mw,beta=beta[i],mcmc_size=1) %>% tail(1) -> ode.it git %>% set_param(c(beta=beta[i])) %>% survival(hmax=NULL) %>% tail(1) -> e.it expect_lt(nmae(ode.it[,1],e.it$survival), 1e-5, "IT:S ODE,beta varying") } rm(i,ode.it,e.it) })