library(ctsem) library(testthat) set.seed(1) context("sunspots") test_that("sunspots", { sunspots<-sunspot.year sunspots<-sunspots[50: (length(sunspots) - (1988-1924))] id <- 1 time <- 1749:1924 datalong <- cbind(id, time, sunspots) #setup model ssmodel <- ctModel(type='stanct', n.latent=2, n.manifest=1, # n.TDpred = 1, manifestNames='sunspots', latentNames=c('ss_level', 'ss_velocity'), LAMBDA=matrix(c( 1, 0), nrow=1, ncol=2), DRIFT=matrix(c(0, 'a21|-log1p(exp(param))', 1, 'a22'), nrow=2, ncol=2), # TDPREDEFFECT=matrix(c('tdeffect',0),2), MANIFESTMEANS=0, CINT=c(0,'cint'), MANIFESTVAR=diag(0,1), T0VAR=matrix(c(1,0,0,1), nrow=2, ncol=2), #Because single subject DIFFUSION=c(0, 0, 0,'diff')) # ssmodel$covmattransform='cholesky' ssfit1 <- ctStanFit(datalong, ssmodel,cores=1,verbose=0) # ssfit <- ctStanFit(datalong, ssmodel,cores=1,verbose=0,optimcontrol = list(hessianType='stochastic', stochasticHessianEpsilon=1e-1)) ssfit2 <- ctStanFit(datalong, ssmodel,cores=2,verbose=0) ssfit3 <- ctStanFit(datalong, ssmodel,cores=1,nlcontrol=list(maxtimestep=.3)) ssfit4 <- ctStanFit(datalong, ssmodel,chains=2,cores=2,iter=300,optimize=F,priors=F, control=list(max_treedepth=8),verbose=0, inits='optimize', intoverpop = T) for(i in 2:4){ testthat::expect_equivalent(get(paste0('ssfit',i))$stanfit$transformedparsfull$ll, get(paste0('ssfit',i-1))$stanfit$transformedparsfull$ll,tol=1e-2) } for(i in 2:4){ testthat::expect_equivalent( ctStanContinuousPars(get(paste0('ssfit',i)))$DRIFT, ctStanContinuousPars(get(paste0('ssfit',i-1)))$DRIFT,tol=1e-1) } })