# crimedatasets - A Comprehensive Collection of Crime-Related Datasets # Version 0.1.0 # Copyright (C) 2024 Renzo Cáceres Rossi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # sentencing_sf data set library(testthat) library(sf) test_that("sentencing_sf loads correctly and has the expected structure", { # Check if it is a Simple Feature (sf) object expect_s3_class(sentencing_sf, "sf") # Verify the number of rows (features) expect_equal(nrow(sentencing_sf), 47) # Verify the number of columns (variables) expect_equal(ncol(sentencing_sf), 9) # Check the presence of required columns expected_columns <- c("name", "wpop", "bpop", "sents", "plantation_belt", "pct_ag_1910", "expected_sents", "sir_raw", "geometry") expect_true(all(expected_columns %in% names(sentencing_sf))) # Verify the data types for the key columns expect_type(sentencing_sf$name, "character") expect_type(sentencing_sf$wpop, "double") # Change to 'double' since 'numeric' is technically double expect_type(sentencing_sf$bpop, "double") # Change to 'double' expect_type(sentencing_sf$sents, "double") # Change to 'double' expect_type(sentencing_sf$plantation_belt, "double") # Change to 'double' expect_type(sentencing_sf$pct_ag_1910, "double") # Change to 'double' expect_type(sentencing_sf$expected_sents, "double") # Change to 'double' expect_type(sentencing_sf$sir_raw, "double") # Change to 'double' # Verify that 'geometry' is a MULTIPOLYGON type expect_s3_class(sentencing_sf$geometry, "sfc_MULTIPOLYGON") # Check if there are any NA values in the dataset (excluding geometry) expect_true(all(!is.na(sentencing_sf$name))) # 'name' should not have NA values expect_true(all(!is.na(sentencing_sf$wpop))) # 'wpop' should not have NA values expect_true(all(!is.na(sentencing_sf$bpop))) # 'bpop' should not have NA values expect_true(all(!is.na(sentencing_sf$sents))) # 'sents' should not have NA values # Check if there are any missing values in the geometry column expect_true(all(!st_is_empty(sentencing_sf$geometry))) # No empty geometries # Verify the CRS (coordinate reference system) is as expected, correcting the expected string order expected_proj4string <- "+proj=aea +lat_0=24 +lon_0=-84 +lat_1=24 +lat_2=31.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs" actual_proj4string <- st_crs(sentencing_sf)$proj4string expect_equal(actual_proj4string, expected_proj4string) # Match CRS string # Optionally, check for any unusual values (e.g., negative populations, or unexpected values in 'sents') expect_true(all(sentencing_sf$wpop >= 0)) # 'wpop' should be non-negative expect_true(all(sentencing_sf$bpop >= 0)) # 'bpop' should be non-negative expect_true(all(sentencing_sf$sents >= 0)) # 'sents' should be non-negative # Optionally, check for any duplicates in 'name' (each region should be unique) expect_equal(length(unique(sentencing_sf$name)), nrow(sentencing_sf)) # No duplicate 'name' entries })