R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # Ensure that a call with two terms and a call with one term but zero > # correlation give the same answer. These are identical mathmatically, > # but follow two different indexing paths in the code. > # > approx <- "efron" > set.seed(3101953) > mkdata <- function(n, beta=c(.4, .1), sitehaz=c(.5,1.5, 2,1)) { + nsite <- length(sitehaz) + site <- rep(1:nsite, each=n) + trt1 <- rep(0:1, length=n*nsite) + hazard <- sitehaz[site] + beta[1]*trt1 + beta[2]*trt1 * (site-mean(site)) + stime <- rexp(n*nsite, exp(hazard)) + q80 <- quantile(stime, .8) + data.frame(site=site, + trt1 = trt1, + trt2 = 1-trt1, + futime= pmin(stime, q80), + status= ifelse(stime>q80, 0, 1), + hazard=hazard + ) + } > > > # The true model has per site coefficients of > # site 1: .5 + .25*trt1 > # site 2: 1.5 + .35*trt1 > # site 3: 2.0 + .45*trt1 > # site 4: 1.0 + .55*trt1 > smdata <- mkdata(150) # 150 per site > > # Variance function that sets the parameters to a fixed value > myvar <- function(var=c(.25, .025, .078)) { + initialize <- function(vinit, fixed, intercept, G, X, sparse, ...) { + imap <- as.matrix(as.numeric(G[[1]])) + list(theta=NULL, imap=imap, X=X, xmap=imap+4, + parms=list(theta=var, fixed=rep(TRUE,8), + xname=dimnames(X)[[2]], nvar=ncol(X))) + } + generate <- function(newtheta, parms) { + theta <- parms$theta + varmat <- diag(rep(theta[1:2], each=4)) + for (i in 1:4) varmat[i,i+4] <- varmat[i+4,i] <- theta[3] + varmat + } + + wrapup <- function(newtheta, b, parms) { + theta <- parms$theta + rtheta <- list(site=c(var1=theta[1], var2=theta[2], covar=theta[3])) + b <- matrix(b, ncol=2) + dimnames(b) <- list(1:4, c("Intercept", "Slope")) + list(theta=rtheta, b=b) + } + out <- list(initialize=initialize, generate=generate, wrapup=wrapup) + class(out) <- 'coxmevar' + out + } > > fit1<- coxme(Surv(futime, status) ~ trt1 + (1 | site) + (trt1|site), smdata, + ties=approx) > fit2 <- coxme(Surv(futime, status) ~ trt1 + (1+trt1 | site), smdata, + ties=approx, varlist=myvar(c(unlist(VarCorr(fit1)), 0))) > > aeq(fit1$log, fit2$log) [1] TRUE > aeq(unlist(ranef(fit1)), unlist(ranef(fit2))) [1] TRUE > aeq(fixef(fit1), fixef(fit2)) [1] TRUE > > # Same models, but fit with the start,stop part of the code > dummy <- runif(nrow(smdata), -4, -1) #all start times before any stop times > fit1b <- coxme(Surv(dummy, futime, status) ~ trt1 + (1 | site) + (trt1|site), + smdata, ties=approx) > all.equal(ranef(fit1b), ranef(fit1)) [1] TRUE > aeq(fit1$loglik, fit1b$loglik) [1] TRUE > > fit2b <- coxme(Surv(dummy, futime, status) ~ trt1 + (1+trt1 | site), smdata, + ties=approx, varlist=myvar(c(unlist(VarCorr(fit1)), 0))) > all.equal(fit2b$loglik, fit2$loglik) [1] TRUE > all.equal(coef(fit2b), coef(fit2)) [1] TRUE > > proc.time() user system elapsed 2.09 0.14 2.21