library(coxme) options(na.action='na.exclude', contrasts=c('contr.treatment', 'contr.poly')) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # A further test of mixed sparse/ non-sparse computation # Make sure all the terms are added in and taken out properly, # when people enter and leave the risk set. # # The choice of "sparse" below forces group 1 to be non-sparse and # group 2-4 to be sparse. It will also force the coefficients to be # in 2,3,4,1 order tdata1 <- data.frame(time =c(5,4,1,1,2,2,2,2,3, 1:8), status=c(0,1,1,0,1,1,1,0,0, rep(1:0,4)), x1 =c(0,1,2,0,1,1,0,1,0, rep(4:1,2)), wt =c(1,2,1,2,3,4,3,2,1, rep(1:2,4)), x2 =c(1,3,5,2,3,6,4,3,1, rep(1:2,4)), grp =c(1,1,2,2,1,1,2,2,1, rep(3,4), rep(4,4))) temp1 <- 5*tdata1$time -3 # each subject spends 4 days not at risk tdata2 <- data.frame(t1 = c(rep(0, length(temp1)), temp1+4), t2 = c(temp1, 10*tdata1$time), status=c(tdata1$status, rev(tdata1$status)), x1 = rep(tdata1$x1, 2), wt = rep(tdata1$wt, 2), x2 = rep(tdata1$x2, 2), grp= rep(tdata1$grp, 2), id = rep(1:17, 2)) # What's it look like? #plot(c(0,80), c(0,17), type='n') #segments(tdata2$t1, tdata2$id, tdata2$t2, tdata2$id) #points(tdata2$t2[tdata2$status==1], tdata2$id[tdata2$status==1], pch=1) theta <- .83 fit1 <- coxme(Surv(t1, t2, status) ~ x1 + x2 +(1|grp), data=tdata2, vfixed=theta, ties='breslow', sparse=c(2, .25)) # This fit will complain when it tries to invert the information matrix-- # ignore the complaint fit2 <- coxph(Surv(t1, t2, status) ~ I(grp==2) + I(grp==3) + I(grp==4) + I(grp==1) + x1 + x2, data=tdata2, method='breslow', init=c(unlist(ranef(fit1)), fixef(fit1)), iter=0) lp <- c(cbind(tdata2$x1, tdata2$x2) %*% fixef(fit1) + unlist(ranef(fit1))[c(4,1,2,3)[tdata2$grp]]) aeq(lp, fit1$linear) fit3 <- coxph(Surv(t1, t2, status) ~ offset(lp), data=tdata2, method='breslow') aeq(fit1$loglik[3] + fit1$penalty, fit3$loglik) aeq(fit3$loglik, fit2$loglik[2]) # # And now, do it mostly by hand as the definitive check # lp2 <- fit1$linear - sum(fit1$mean * fixef(fit1)) temp.risk <- exp(lp2) dtimes <- sort(unique(tdata2$t2[tdata2$status==1])) nd <- length(dtimes) denom <- double(nd) xbar <- matrix(0., nrow=nd, ncol=6) xtemp <- cbind(1*(tdata2$grp==2), 1*(tdata2$grp==3), 1*(tdata2$grp==4), 1*(tdata2$grp==1), tdata2$x1, tdata2$x2) for (i in 1:nd) { who <- (tdata2$t1 = dtimes[i]) denom[i] <- sum(temp.risk[who]) xbar[i,] <- colSums(temp.risk[who] * xtemp[who,])/denom[i] } temp.log <- sum(lp2[tdata2$status==1] - log(denom[match(tdata2$t2[tdata2$status==1], dtimes)])) aeq(fit1$loglik[3] + fit1$pen, temp.log) aeq(fit1$penalty, sum(unlist(ranef(fit1))^2)/(2*theta)) # The linear predictors will differ by a constant, since fit2 will have # subtracted means from the factor terms. aeq(diff(range(fit1$linear-fit2$linear)),0) # Score statistic temp.score <- xtemp[tdata2$status==1,] - xbar[match(tdata2$t2[tdata2$status==1], dtimes),] aeq(colSums(temp.score) - c(unlist(ranef(fit1)),0,0)/theta, fit1$u) dt <- coxph.detail(fit2, riskmat=T) aeq(dt$x, xtemp[as.numeric(dimnames(dt$x)[[1]]),]) nevent <- table(tdata2$t2, tdata2$status)[,2] nevent <- nevent[nevent>0] aeq(dt$nevent, nevent) aeq(dt$means, xbar) aeq(colSums(temp.score), colSums(dt$score)) # Check out the information matrix. # The coxme model has extra added to the diagonal, and due to # the sparseness the off-diagonal elements for vars 1-3 are zero. temp1 <- as.matrix(fit1$hmat) %*% diag(sqrt(diag(fit1$hmat))) temp.imat <- temp1 %*% t(temp1) dt.imat <- apply(dt$imat,1:2, sum) aeq(diag(temp.imat), diag(dt.imat) + c(rep(1/theta,4),0,0)) aeq(temp.imat[4:6, 3], dt.imat[4:6,3]) aeq(temp.imat[5:6, 4:6], dt.imat[5:6,4:6])