R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > options(na.action='na.exclude', contrasts=c('contr.treatment', 'contr.poly')) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > # > # Now do iterations on tdata0, checking it out with coxph.detail > # Note that the coxph calls give some "singular matrix" warnings > # which can be ignored > # > tdata0 <- data.frame(time =c(5,4,1,1,2,2,2,2,3), + status=c(0,1,1,0,1,1,1,0,0), + x1 =c(0,1,2,0,1,1,0,1,0), + wt =c(1,2,1,2,3,4,3,2,1), + x2 =c(1,3,5,2,3,6,4,3,1), + grp =c(1,1,2,2,1,1,2,2,1)) > theta <- .53 > fit0 <- coxme(Surv(time, status) ~ x1 + x2 + (1|grp), data=tdata0, + vfixed=theta, weight=wt, iter=0) > > tfit <- coxph(Surv(time, status) ~ I(grp==1) + I(grp==2) + x1 + x2, + data=tdata0, x=T, weight=wt, iter=0) > dt0 <- coxph.detail(tfit) > > aeq(apply(dt0$score,2,sum), fit0$u) [1] TRUE > h0 <- apply(dt0$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) > aeq(as.matrix(gchol(h0)), as.matrix(fit0$hmat)) [1] TRUE > aeq(as.matrix(solve(fit0$var, full=F)), h0) [1] TRUE > > # Now iteration 1 > fit1 <- coxme(Surv(time, status) ~ x1 + x2 +(1|grp), data=tdata0, + vfixed=theta, weight=wt, iter=1) > aeq(fit0$u %*% fit0$var, c(unlist(ranef(fit1)), fixef(fit1))) [1] TRUE > tfit <- coxph(Surv(time, status) ~ I(grp==1) + I(grp==2) + x1 + x2, + data=tdata0, x=T, weight=wt, iter=0, + init=c(unlist(ranef(fit1)), fixef(fit1))) > dt1 <- coxph.detail(tfit) > > aeq(apply(dt1$score,2,sum)- c(unlist(ranef(fit1)), 0,0)/theta, fit1$u) [1] TRUE > h1 <- apply(dt1$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) > aeq(as.matrix(gchol(h1)), as.matrix(fit1$hmat)) [1] TRUE > aeq(as.matrix(solve(fit1$var, full=F)), h1) [1] TRUE > > # And iteration 2 > fit2 <- coxme(Surv(time, status) ~ x1 + x2 + (1|grp), data=tdata0, + vfixed=theta, weight=wt, iter=2) > aeq(solve(fit1$hmat, fit1$u), + c(unlist(ranef(fit2)), fixef(fit2)) - + c(unlist(ranef(fit1)), fixef(fit1))) [1] TRUE > aeq(solve(fit1$hmat, fit1$u), fit1$variance %*% fit1$u) [1] TRUE > > # > # a copy of tdata0, but with several subjects broken into multiple pieces, > # exercises the "add in & take out" portions of the code > # > rcnt <- c(3,2,1,1,1,2,2,1,3) # rep count > tdata0b <- data.frame(time2 = c(3,4,5, 2,4, 1,1,2, 1,2, .5,2, 2, 1,2,3), + time1 = c(0,3,4, 0,2, 0,0,0, 0,1, 0,.5, 0, 0,1,2), + status = c(0,0,0, 0,1, 1,0,1, 0,1, 0, 1, 0, 0,0,0), + x1 = rep(tdata0$x1, rcnt), + wt = rep(tdata0$wt, rcnt), + x2 = rep(tdata0$x2, rcnt), + grp = rep(tdata0$grp, rcnt)) > fit0 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, + vfixed=theta, weight=wt, iter=0) > > tfit <- coxph(Surv(time1, time2, status) ~ I(grp==1) + I(grp==2) + x1 + x2, + data=tdata0b, x=T, weight=wt, iter=0) > dt0 <- coxph.detail(tfit) > > aeq(apply(dt0$score,2,sum), fit0$u) [1] TRUE > h0 <- apply(dt0$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) > aeq(as.matrix(gchol(h0)), as.matrix(fit0$hmat)) [1] TRUE > aeq(as.matrix(solve(fit0$var, full=F)), h0) [1] TRUE > > # Now iteration 1 > fit1 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, + vfixed=theta, weight=wt, iter=1) > aeq(fit0$u %*% fit0$var, c(unlist(ranef(fit1)), fixef(fit1))) [1] TRUE > tfit <- coxph(Surv(time1, time2, status) ~ I(grp==1) + I(grp==2) + x1 + x2, + data=tdata0b, x=T, weight=wt, iter=0, + init=c(unlist(ranef(fit1)), fixef(fit1))) > dt1 <- coxph.detail(tfit) > > aeq(apply(dt1$score,2,sum)- c(unlist(ranef(fit1)), 0,0)/theta, fit1$u) [1] TRUE > h1 <- apply(dt1$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) > aeq(as.matrix(gchol(h1)), as.matrix(fit1$hmat)) [1] TRUE > aeq(as.matrix(solve(fit1$var, full=F)), h1) [1] TRUE > > # And iteration 2 > fit2 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, + vfixed=theta, weight=wt, iter=2) > aeq(fit1$u %*% fit1$var, c(unlist(ranef(fit2)), fixef(fit2)) - + c(unlist(ranef(fit1)), fixef(fit1))) [1] TRUE > > rm(fit0, fit1, dt0, dt1, tfit, h0, h1, theta) > rm(fit2) > > proc.time() user system elapsed 1.71 0.29 1.93