library(coxme) options(na.action='na.exclude', contrasts=c('contr.treatment', 'contr.poly')) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # Now do iterations on tdata0, checking it out with coxph.detail # Note that the coxph calls give some "singular matrix" warnings # which can be ignored # tdata0 <- data.frame(time =c(5,4,1,1,2,2,2,2,3), status=c(0,1,1,0,1,1,1,0,0), x1 =c(0,1,2,0,1,1,0,1,0), wt =c(1,2,1,2,3,4,3,2,1), x2 =c(1,3,5,2,3,6,4,3,1), grp =c(1,1,2,2,1,1,2,2,1)) theta <- .53 fit0 <- coxme(Surv(time, status) ~ x1 + x2 + (1|grp), data=tdata0, vfixed=theta, weight=wt, iter=0) tfit <- coxph(Surv(time, status) ~ I(grp==1) + I(grp==2) + x1 + x2, data=tdata0, x=T, weight=wt, iter=0) dt0 <- coxph.detail(tfit) aeq(apply(dt0$score,2,sum), fit0$u) h0 <- apply(dt0$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) aeq(as.matrix(gchol(h0)), as.matrix(fit0$hmat)) aeq(as.matrix(solve(fit0$var, full=F)), h0) # Now iteration 1 fit1 <- coxme(Surv(time, status) ~ x1 + x2 +(1|grp), data=tdata0, vfixed=theta, weight=wt, iter=1) aeq(fit0$u %*% fit0$var, c(unlist(ranef(fit1)), fixef(fit1))) tfit <- coxph(Surv(time, status) ~ I(grp==1) + I(grp==2) + x1 + x2, data=tdata0, x=T, weight=wt, iter=0, init=c(unlist(ranef(fit1)), fixef(fit1))) dt1 <- coxph.detail(tfit) aeq(apply(dt1$score,2,sum)- c(unlist(ranef(fit1)), 0,0)/theta, fit1$u) h1 <- apply(dt1$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) aeq(as.matrix(gchol(h1)), as.matrix(fit1$hmat)) aeq(as.matrix(solve(fit1$var, full=F)), h1) # And iteration 2 fit2 <- coxme(Surv(time, status) ~ x1 + x2 + (1|grp), data=tdata0, vfixed=theta, weight=wt, iter=2) aeq(solve(fit1$hmat, fit1$u), c(unlist(ranef(fit2)), fixef(fit2)) - c(unlist(ranef(fit1)), fixef(fit1))) aeq(solve(fit1$hmat, fit1$u), fit1$variance %*% fit1$u) # # a copy of tdata0, but with several subjects broken into multiple pieces, # exercises the "add in & take out" portions of the code # rcnt <- c(3,2,1,1,1,2,2,1,3) # rep count tdata0b <- data.frame(time2 = c(3,4,5, 2,4, 1,1,2, 1,2, .5,2, 2, 1,2,3), time1 = c(0,3,4, 0,2, 0,0,0, 0,1, 0,.5, 0, 0,1,2), status = c(0,0,0, 0,1, 1,0,1, 0,1, 0, 1, 0, 0,0,0), x1 = rep(tdata0$x1, rcnt), wt = rep(tdata0$wt, rcnt), x2 = rep(tdata0$x2, rcnt), grp = rep(tdata0$grp, rcnt)) fit0 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, vfixed=theta, weight=wt, iter=0) tfit <- coxph(Surv(time1, time2, status) ~ I(grp==1) + I(grp==2) + x1 + x2, data=tdata0b, x=T, weight=wt, iter=0) dt0 <- coxph.detail(tfit) aeq(apply(dt0$score,2,sum), fit0$u) h0 <- apply(dt0$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) aeq(as.matrix(gchol(h0)), as.matrix(fit0$hmat)) aeq(as.matrix(solve(fit0$var, full=F)), h0) # Now iteration 1 fit1 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, vfixed=theta, weight=wt, iter=1) aeq(fit0$u %*% fit0$var, c(unlist(ranef(fit1)), fixef(fit1))) tfit <- coxph(Surv(time1, time2, status) ~ I(grp==1) + I(grp==2) + x1 + x2, data=tdata0b, x=T, weight=wt, iter=0, init=c(unlist(ranef(fit1)), fixef(fit1))) dt1 <- coxph.detail(tfit) aeq(apply(dt1$score,2,sum)- c(unlist(ranef(fit1)), 0,0)/theta, fit1$u) h1 <- apply(dt1$imat,1:2,sum) + diag(c(1/theta, 1/theta,0,0)) aeq(as.matrix(gchol(h1)), as.matrix(fit1$hmat)) aeq(as.matrix(solve(fit1$var, full=F)), h1) # And iteration 2 fit2 <- coxme(Surv(time1, time2, status) ~ x1 + x2 + (1|grp), data=tdata0b, vfixed=theta, weight=wt, iter=2) aeq(fit1$u %*% fit1$var, c(unlist(ranef(fit2)), fixef(fit2)) - c(unlist(ranef(fit1)), fixef(fit1))) rm(fit0, fit1, dt0, dt1, tfit, h0, h1, theta) rm(fit2)