R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > options(na.action='na.exclude', contrasts=c('contr.treatment', 'contr.poly')) > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # > # Same data set as slope1 > # > set.seed(56) > n.subject <- seq(180, by=21, length=9) # number of subjects > slope <- sort(-.5 + rnorm(9, sd=.5)) # true treament effects > > inst <- rep(1:9, n.subject) > n <- length(inst) > simdata <- data.frame(id=1:n, inst=inst, + trt= rep(0:1, length=n), + age= runif(n, 40, 70)) > #risk goes up 30%/decade of age > simdata$hazard <- .8* exp(simdata$trt * rep(slope, n.subject) + + (simdata$age-55) * .03) > > rtime <- function(hazard, censor=c(1,2)) { + stime <- rexp(length(hazard), rate=hazard) + ctime <- runif(length(hazard), censor[1], censor[2]) + list(time= pmin(stime, ctime), status=1*(stime <=ctime)) + } > temp <- rtime(simdata$hazard) > simdata$time <- temp$time > simdata$status <- temp$status > contr.none <- function(n,contrasts=T) { + if(is.numeric(n) && length(n) == 1.) + levs <- 1.:n + else { + levs <- n + n <- length(n) + } + contr <- array(0., c(n, n), list(levs, levs)) + contr[seq(1., n^2., n + 1.)] <- 1. + contr + } > options(contrasts=c('contr.none', 'contr.poly')) > igchol <- function(x) { + dd <- diag(x) + ll <- as.matrix(x) + ll %*% diag(dd) %*% t(ll) + } > > > #Hammer through fit3 an iteration at a time > # Iteration 0, first form > cox1 <- coxph(Surv(time, status) ~ factor(inst)*trt + age, simdata, + iter=0, x=T) > indx <- c(1:9, 12:20, 11,10) #order of variables in coxph > cx1 <- cox1$x[,indx] > cox1 <- coxph(Surv(time, status) ~ cx1, simdata, iter=0, x=T) > dt1 <- coxph.detail(cox1) > u1 <- apply(dt1$score, 2, sum) > imat1 <- apply(dt1$imat,1:2, sum) > > fit3a <- coxme(Surv(time, status) ~ age + trt + (1|inst) + (trt|inst), + simdata, vfixed=list(.1,.3), iter=0) > aeq(u1, fit3a$u) [1] TRUE > pen1 <- diag(c(rep(1/.1,9), rep(1/.3,9), 0,0)) > aeq(imat1+pen1, as.matrix(igchol(fit3a$hmat))) [1] TRUE > > # Iteration 0, second form > idlist <- sort(outer(1:9, 0:1, paste, sep='/')) > mat1 <- matrix(diag(18), 18, dimnames=list(idlist, idlist)) > mat2 <- bdsBlock(idlist, rep(1:9, each=2)) > mat3 <- diag(rep(0:1, 9)) > dimnames(mat3) <- list(idlist, idlist) > fit3b <- coxme(Surv(time, status) ~ age + trt + (1|inst/trt), simdata, + varlist=coxmeMlist(list(mat2, mat3), rescale=F, pdcheck=F), + vfixed=c(.1,.3), iter=0) > > group <- strata(simdata$inst, simdata$trt, shortlabel=T, sep='/') > cox2 <- coxph(Surv(time, status) ~ group + age + trt, simdata, + iter=0, x=T) > dt2 <- coxph.detail(cox2) > u2 <- apply(dt2$score, 2, sum) > aeq(fit3b$u, u2) [1] TRUE > > imat2 <- apply(dt2$imat, 1:2, sum) > pen2 <- matrix(0., 20,20) > pen2[1:18, 1:18] <- solve(.1*mat2 + .3*mat3) > aeq(imat2 + pen2, as.matrix(igchol(fit3b$hmat))) [1] TRUE > > > # This function should map between coefficients > map <- matrix(0, 20,20) > for (i in 1:9) { + map[i, 2*i -1] <- 1 + map[i+9, 2*i -1] <- -1 + map[i+9, 2*i] <- 1 + } > map[19,19] <- 1 > map[20,20] <- 1 > aeq(u1 %*%map, u2) #scores map [1] TRUE > aeq(pen2, t(map) %*% pen1 %*% map) #penalty matrices map [1] TRUE > aeq(imat2, t(map) %*% imat1 %*% map) # Cox variances map [1] TRUE > > # Now iteration 1 > step1 <- solve(imat1 + pen1, u1) > step2 <- solve(imat2 + pen2, u2) > aeq(solve(fit3a$hmat, fit3a$u), step1) [1] TRUE > aeq(solve(fit3b$hmat, fit3b$u), step2) [1] TRUE > > > fit3a.1 <- coxme(Surv(time, status) ~ age + trt + (1|inst) + (trt|inst), + simdata, vfixed=list(.1,.3), iter=1) > aeq(c(unlist(ranef(fit3a.1)), fixef(fit3a.1)), step1) [1] TRUE > > fit3b.1 <- coxme(Surv(time, status) ~ age + trt + (1|inst/trt), simdata, + varlist=coxmeMlist(list(mat2, mat3), rescale=F, pdcheck=F), + vfixed=c(.1,.3), iter=1) > aeq(c(unlist(ranef(fit3b.1)), fixef(fit3b.1)), step2) [1] TRUE > > proc.time() user system elapsed 3.18 0.21 3.32