R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > # > # Check out the code on a simulated data set, > # arose out a concern that the first derivatives were wrong > # when the model had random slopes and intercepts > # (The code was ok, but another test case is always good.) > # The heart of the test is to re-compute quantities using > # a combination of coxph or matrix algebra, and check these with > # the coxme answers. > # > approx <- "efron" > set.seed(9291978) > mkdata <- function(n, beta=c(.4, .1), sitehaz=c(.5,1.5, 2,1)) { + nsite <- length(sitehaz) + site <- rep(1:nsite, each=n) + trt1 <- rep(0:1, length=n*nsite) + hazard <- sitehaz[site] + beta[1]*trt1 + beta[2]*trt1 * (site-mean(site)) + stime <- rexp(n*nsite, exp(hazard)) + q80 <- quantile(stime, .8) + data.frame(site=site, + trt1 = trt1, + trt2 = 1-trt1, + futime= pmin(stime, q80), + status= ifelse(stime>q80, 0, 1), + hazard=hazard + ) + } > > trdata <- mkdata(150) #150 enrolled per site > fixf <- coxph(Surv(futime, status) ~ factor(site)*trt1, trdata, + method=approx) > > fit1 <- coxme(Surv(futime, status) ~ trt1 + (1 + trt1 | site), trdata, + ties=approx) > fit2 <- coxme(Surv(futime, status) ~ trt2 + (1 + trt2 | site), trdata, + ties=approx) > # Fit1 and fit2 are actually different models, with different > # iteration paths and maxima. > > # Test out loglik > eta <- fit1$linear > fit1b <- coxph(Surv(futime, status) ~ eta, trdata, init=1, iter=0, + method=approx) > aeq(fit1b$loglik[2], fit1$loglik[3]+fit1$penal) [1] TRUE > > # First derivatives > temp <- VarCorr(fit1)[[1]] > sigma <- diag(c(rep(temp[1],4), rep(temp[4],4))) > sigma[cbind(1:4,5:8)] <- temp[3]* sqrt(temp[1] * temp[4]) > sigma[cbind(5:8,1:4)] <- temp[3]* sqrt(temp[1] * temp[4]) > pen <- matrix(0., 9,9) > pen[1:8, 1:8] <- solve(sigma) > pcoef <- c(unlist(ranef(fit1)), fixef(fit1)) > aeq(pcoef %*% pen %*% pcoef/2, fit1$penal) [1] TRUE > > xx <- 1* with(trdata, cbind(site==1, site==2, site==3, site==4)) > xx <- cbind(xx, xx*trdata$trt1) > > cfit1 <- coxph(Surv(futime, status) ~ xx + trt1, iter=0, + method=approx, init=pcoef, trdata) > aeq(cfit1$log, fit1b$log) #check my typing [1] TRUE > > # Using coxph.detail, I find the first and second derivatives > # via a completely different code path than coxme > dt1 <- coxph.detail(cfit1) > first <- colSums(dt1$score) - pcoef%*%pen > aeq(first, fit1$u) #do they agree? [1] TRUE > > i2 <- apply(dt1$imat, 1:2, sum) + pen #information is -1*second deriv > aeq(as.matrix(fit1$hmat, one=F), as.matrix(gchol(i2), ones=F)) [1] TRUE > > proc.time() user system elapsed 2.32 0.21 2.48