R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Check out the code on a simulated data set. On first cut it appeared to > # do very badly, this turned out to be a bug in coxfit6d.c, when there > # were random slopes it miscalculated the linear predictor. > # > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > set.seed(1979) > mkdata <- function(n, beta=c(.4, .1), sitehaz=c(.5,1.5, 2,1)) { + nsite <- length(sitehaz) + site <- rep(1:nsite, each=n) + trt1 <- rep(0:1, length=n*nsite) + hazard <- sitehaz[site] + beta[1]*trt1 + beta[2]*trt1 * (site-mean(site)) + stime <- rexp(n*nsite, exp(hazard)) + q80 <- quantile(stime, .8) + data.frame(site=site, + trt1 = trt1, + trt2 = 1-trt1, + futime= pmin(stime, q80), + status= ifelse(stime>q80, 0, 1), + hazard=hazard + ) + } > > trdata <- mkdata(150) #150 enrolled per site > #fixf <- coxph(Surv(futime, status) ~ factor(site)*trt1, trdata) > #pfit <- pyears(Surv(futime, status) ~ site + trt1, trdata) > #(pfit$event/sum(pfit$event))/ (pfit$pyears/sum(pfit$pyears)) > > set.seed(50) > #nsim <- 500 > nsim <- 20 # speedup for CRAN > > fit <- coxme(Surv(futime, status) ~ trt2 + (1 + trt2 | site), trdata, + refine.n=nsim, refine.detail=TRUE) > debug <- fit$refine.detail > > # Recreate the variance-covariance and sim data that was used > set.seed(50) > bmat <- matrix(rnorm(8*nsim), nrow=8) > hmatb <- fit$hmat[1:8, 1:8] > hmat.inv <- as.matrix(solve(hmatb)) > > chidf <- coxme.control()$refine.df > > b2 <- backsolve(hmatb, bmat, upper=TRUE) > htran <- as(hmatb, "dtCMatrix") #verify that backsolve works correctly > all.equal(as.matrix(htran %*% b2), bmat, check.attributes=FALSE) [1] TRUE > > b2 <- scale(b2, center=F, scale=sqrt(rchisq(nsim, df=chidf)/chidf)) > b3 <- b2 + unlist(ranef(fit)) > aeq(b3, debug$bmat) [1] TRUE > > > temp <- VarCorr(fit)[[1]] > sigma <- diag(c(rep(temp[1],4), rep(temp[4],4))) > sigma[cbind(1:4,5:8)] <- temp[3]* sqrt(temp[1] * temp[4]) > sigma[cbind(5:8,1:4)] <- temp[3]* sqrt(temp[1] * temp[4]) > > if (!is.null(debug)) + all.equal(as.matrix(gchol(sigma), ones=F), as.matrix(debug$gkmat, ones=F)) [1] TRUE > > coxll <- double(nsim) > for (i in 1:nsim) { + lp <- trdata$trt2 * fixef(fit) + b3[trdata$site,i] + + b3[trdata$site +4,i] * trdata$trt2 + tfit <- coxph(Surv(futime, status) ~ offset(lp), trdata) + coxll[i] <- tfit$loglik + } > if (!is.null(debug)) all.equal(coxll, debug$log) [1] TRUE > > # How does the direct average compare to the IPL? > # (This is not guarranteed to be accurate, just curious) > constant <- .5*(log(2*pi) + sum(log(diag(gchol(sigma))))) > fit$log[2] + c(IPL=0, sim=log(mean(exp(coxll-fit$log[2]))) - constant) IPL sim -2715.550 -2689.821 > > # Compute the Taylor series for the IPL > bhat <- unlist(ranef(fit)) > b.sig <- t(b2) %*% fit$hmat[1:8, 1:8] # b times sqrt(H) > taylor <- rowSums(b.sig^2)/2 # vector of b'H b/2 > aeq(taylor, debug$penalty2) [1] TRUE > > # Look at how well the Taylor series does > pen <- solve(sigma) > simpen <- colSums(b3 *(pen%*%b3))/2 #penalty for each simulated b > aeq(simpen, debug$penalty1) [1] TRUE > > #plot(coxll- simpen, fit$log[3] - taylor, > # xlab="Actual PPL for simulated points", > # ylab="Taylor series approximation") > #abline(0,1) > # > > #And now I need the Gaussian integration contant and the t-density > require(mvtnorm) Loading required package: mvtnorm > tdens <- dmvt(t(b3), delta=unlist(ranef(fit)), sigma=hmat.inv, df=chidf) > aeq(tdens, debug$tdens) [1] TRUE > > # The normalization constant for the Gaussian penalty > # > temp <- determinant(sigma, log=TRUE) > gnorm <- -(4*log(2*pi) + .5*temp$sign *temp$modulus) > aeq(gnorm, debug$gdens) [1] TRUE > > m2 <- fit$loglik[2] > errhat <- exp(coxll+gnorm -(simpen + tdens +m2)) - + exp(fit$log[3]+ gnorm -(taylor + tdens + m2)) > if (!is.null(debug)) { + aeq(errhat, debug$errhat) + } [1] TRUE > > proc.time() user system elapsed 1.95 0.28 2.21