R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(coxme) Loading required package: survival Loading required package: bdsmatrix Attaching package: 'bdsmatrix' The following object is masked from 'package:base': backsolve > require(nlme) Loading required package: nlme > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > tdata <- eortc > tdata$center2 <- factor(tdata$center) > tdata$trt2 <- factor(tdata$trt) > > fit1 <- lme(y ~ trt, random= ~ 1|center2, data=tdata, + method="ML") > fit2 <- lmekin(y ~ trt + (1|center), tdata) > > #I get the same loglik but slightly different coefficients. > # (The loglik is flat on top, and we are using different starting > # estimates.) So we need to use a toloerance for the test. > vcomp <- function(m1, m2, ...) { + temp1 <- as.numeric(VarCorr(m1)[,2]) #lme gives a matrix of text + # temp2 <- m2$sigma^2 * c(unlist(VarCorr(m2)), 1) #lmekin the variance struct + temp2 <- c(unlist(VarCorr(m2)), m2$sigma^2) #lmekin the variance struct + aeq(temp1, sqrt(temp2), ...) + } > > aeq(fit1$logLik, fit2$loglik) [1] TRUE > aeq(fit1$sigma, fit2$sigma, tol=1e-4) [1] TRUE > aeq(fixef(fit1), fixef(fit2), tol=1e-4) [1] TRUE > vcomp(fit1, fit2, tol=1e-3) [1] TRUE > > # A second fit, using the matrix form > ucen <- sort(unique(tdata$center)) > kmat <- diag(length(ucen)) > dimnames(kmat) <- list(ucen, ucen) > fit3 <- lmekin(y ~ trt + (1|center), tdata, varlist=kmat) > aeq(fit3$coefficients, fit2$coefficients) [1] TRUE > aeq(unlist(VarCorr(fit3)), unlist(VarCorr(fit2))) [1] TRUE > > # Force the same coefs. > temp <- as.numeric(unclass(fit1$modelStruct$reStruct)[[1]]) > fit3 <- lmekin(y~trt + (1|center), tdata, + vfixed= exp(2*temp)) > aeq(fit1$logLik, fit3$loglik) [1] TRUE > aeq(fit1$sigma, fit3$sigma) [1] TRUE > aeq(fixef(fit1), fixef(fit3)) [1] TRUE > aeq(ranef(fit1), ranef(fit3), check.attributes=FALSE) [1] TRUE > vcomp(fit1, fit3, tol=1e-7) [1] TRUE > aeq(residuals(fit1), residuals(fit3)) [1] TRUE > > # Now a model with random slopes and intercepts > fit5 <- lme(y ~ trt, random= ~ trt|center, data=tdata, + method="REML") > fit6 <- lmekin(y~ trt + (1+trt | center), data=tdata, + method="REML") > aeq(fit5$logLik, fit6$loglik) [1] TRUE > aeq(fit5$sigma, fit6$sigma, tol=1e-4) [1] TRUE > aeq(fixef(fit5), fixef(fit6), tol=1e-4) [1] TRUE > > > # > # Use an lme data set > # > mystool <- as.data.frame(ergoStool) #get rid of contrast attributes > > efit1 <- lme(effort ~ Type, data=mystool, random= ~1|Subject, + method="ML") > efit2 <- lmekin(effort ~ Type + (1|Subject), mystool) > aeq(efit1$logLik, efit2$loglik) [1] TRUE > aeq(fixef(efit1), fixef(efit2)) [1] TRUE > vcomp(efit1, efit2, tol=1e-5) [1] TRUE > aeq(efit1$sigma, efit2$sigma, tol=1e-5) [1] TRUE > > efit3 <-lme(effort ~ Type, data=mystool, random= ~1|Subject, + method="REML") > efit4 <- lmekin(effort ~ Type + (1|Subject), mystool, method="REML") > > aeq(efit3$logLik, efit4$loglik) [1] TRUE > aeq(fixef(efit3), fixef(efit4)) [1] TRUE > vcomp(efit3, efit4, tol=1e-3) [1] TRUE > aeq(efit3$sigma, efit4$sigma, tol=1e-4) [1] TRUE > > proc.time() user system elapsed 3.17 0.25 3.42