R Under development (unstable) (2023-12-04 r85659 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan > ## > ## This program is free software; you can redistribute it and/or modify it under > ## the terms of the GNU General Public License as published by the Free Software > ## Foundation; either version 3 of the License, or (at your option) any later > ## version. > ## > ## This program is distributed in the hope that it will be useful, but WITHOUT > ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS > ## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more > ## details. > ## > ## You should have received a copy of the GNU General Public License along with > ## this program; if not, see . > > > require(copula) Loading required package: copula > set.seed(1) > n <- 2000 > N <- 100 # number of variates used for the Kolmogorov-Smirnov test > > ## maximal deviation for deciding if sample versions of Kendall's tau are > ## "close enough" to population versions; NB: depends on 'n' > eps.tau <- 0.06 > > (doExtras <- copula:::doExtras()) [1] FALSE > doPlots <- doExtras > if(doPlots && !dev.interactive(orNone=TRUE)) pdf("nac-experi.pdf") > > options(warn = 2)# warning not allowed! > > > ### 3d check functions ######################################################### > > ##' correlation check function and run time measuring > ##' > ##' @title Check correlation matrix and measure run times of 3d fully nested Archimedean copulas > ##' @param n number of variates to be drawn > ##' @param th0 theta0 > ##' @param th1 theta1 > ##' @param cop acopula > ##' @return a list containing run times for V0 and V01 and Kendall's taus > ##' @author Marius Hofert, Martin Maechler > corCheck <- function(n, th0,th1, cop) { + mat <- matrix(0,nrow = n,ncol = 3) + V0time <- system.time(V0 <- cop@V0(n,th0)) + V01time <- system.time(V01 <- cop@V01(V0,th0,th1)) + mat <- cbind(runif(n), + exp(-V0*cop@iPsi(cop@psi(rexp(n)/V01,th1),th0)), + exp(-V0*cop@iPsi(cop@psi(rexp(n)/V01,th1),th0))) + mat[,] <- cop@psi(-log(mat[,])/V0,th0) + list(V0time,V01time, name = cop@name, cor = cor(mat, method = "kendall")) + } > > ##' create output > prt.tau.diff <- function(c1, c2){ + stopifnot(is.matrix(c1)) + delta.c <- 1000 * abs(c1 - c2) + cat(sprintf("Max & Mean distance * 1000 to true pairwise Kendall's taus: %7.1f %7.1f\n", + max(delta.c), mean(delta.c))) + invisible() + } > > ##' create output > corCheckout <- function(x, trCorr, famName = x$name) { + cat(sprintf("Time [ms] V0 for '%s': %7.1f\n", famName, 1000*x[[1]][1])) + cat(sprintf("Time [ms] V01 for '%s': %7.1f\n", famName, 1000*x[[2]][1])) + prt.tau.diff(x[["cor"]], trCorr) ; cat("\n") + } > > ##' Function implementing the chi^2 test > ##' > ##' @title The Chi-square test > ##' @param n [integer] sample size > ##' @param N [integer] number of replications > ##' @param cop outer_nacopula to generate from > ##' @param nInt positive integer: the number of intervals used for each grid > ##' dimension > ##' @return an "chiSqChk_cop" object; just a list(...) and a print method > ##' @author Marius Hofert, Martin Maechler > chiSq_check_cop <- function(n,N,cop,nInt, verbose = interactive()){ + copName <- deparse(substitute(cop)) # copula name + d <- dim(cop) # copula dimension + stopifnot(is.numeric(d), d >= 1, is.numeric(nInt), nInt >= 1) + pts <- (1:nInt)/nInt # (upper) division points [lower = upper - h + # = {0, ..., 1-h}; h=1/nInt] + mygrid <- do.call("expand.grid", rep.int(list(pts), d)) # build grid + m <- nInt^d # == grid length == nrow(mygrid) + v.cube <- nInt^(0:(d-1)) + + ## build a function that returns the number of the cube in which each row + ## of U falls + cube <- function(U, pts) { + di <- dim(U) + intervals <- array(cut(U, breaks = pts, include.lowest = TRUE, + labels = FALSE), # find "interval number" for + # each component of U; these numbers + # are in {NA,1,2,3,...,nInt-1} + dim = di) + intervals[is.na(intervals)] <- 0 # NAs correspond to smallest interval + as.vector(intervals %*% v.cube) + 1 + } + + ## determine the expected number of observations in each cube + prob_up <- function(u) { + ## probability mass in cube with upper corner 'u' + mesh <- 1/nInt + l <- u - mesh + prob(cop, l, u) + } + masscube <- apply(mygrid, 1, prob_up) + E_nobs <- n * masscube # expected number of observations in each cube + + ## now simulate data, count observations in each cube, and compute test + ## statistic + k <- 0 + CPU <- system.time({ + T <- replicate(N, { + if(verbose) cat(sprintf("%2d%1s",{k <<- k+1}, if(k %% 20)"" + else "\n")) + U <- rnacopula(n,cop) # generate data + cubenumbers <- cube(U,pts) # for each row vector of U, find the + # number of the cube in which the + # vector falls + nobs <- tabulate(cubenumbers, nbins = m) # number of observations + # in each cube + sum((nobs - E_nobs)^2 / E_nobs) # chi^2 test statistic + }); if(verbose) cat("done\n") + })[1] + + structure(class = "chiSqChk_cop", + list( ## compute the result of the Kolmogorov-Smirnov test based + ## on the N realizations of the chi^2 test statistics: + ks = ks.test(T, "pchisq", df = m-1), + T = T, CPU = CPU, + n=n, N=N, copName = copName, m = m, + ## percentage of cubes that fulfill the rule of thumb: + percentrot = (sum(E_nobs >= 5)/m)*100 + )) + }## end{chiSq_check_cop} > > ##' a print method for this class: > print.chiSqChk_cop <- function(x, ...) { + stopifnot(is.list(x), all(c("ks","T","CPU","n","N") %in% names(x)), + is.numeric(pv <- x$ks[[2]])) + cat(sprintf("%s (3d)NAcopula (n=%d):\n %s (N=%d): %s\n ", + x$copName, x$n, + "P-value of the chi-square test", x$N, format.pval(pv)), + sprintf("Percentage fulfilling chi^2 rule of thumb: %4.1f\n", + x$percentrot), + sprintf("Time (user) needed = c(N,n; cop) = %8.1f [ms]\n", + 1000 * x$CPU), sep="") + if(pv < 0.05) { + if(pv < 0.01) + cat("\n*************** P-value < 0.01 <<<<<<<<<<<<<<<<<<<<<<<<\n", + "\n*************** ============== <<<<<<<<<<<<<<<<<<<<<<<<\n\n") + else cat("\n*** > > > P-value < 0.05 <<<<<<<<<<<<<<<<<<<<<<<<\n\n") + stopifnot(pv > 0.001) + } + invisible(x) + } > > ##' compute the probability to fall in a cube with > ##' lower point l and upper point u for d=3 > probin3dcube <- function(cop,l,u) { + pCopula(u, cop)+ + - pCopula(c(l[1],u[2],u[3]), cop)+ + - pCopula(c(u[1],l[2],u[3]), cop)+ + - pCopula(c(u[1],u[2],l[3]), cop)+ + + pCopula(c(l[1],l[2],u[3]), cop)+ + + pCopula(c(l[1],u[2],l[3]), cop)+ + + pCopula(c(u[1],l[2],l[3]), cop)+ + - pCopula(l, cop) + } > > > ### 3d examples ################################################################ > > ### AMH ######################################################################## > > theta0 <- 0.7135 # tau_{12}=tau_{13}=0.2, tau_{23}=0.3 > theta1 <- 0.9430 > > ## check 1 > corCheckAMH <- corCheck(n,theta0,theta1,copAMH) > trCorr <- rbind(c(1,0.2,0.2), + c(0.2,1,0.3), + c(0.2,0.3,1)) > corCheckout(corCheckAMH,trCorr) Time [ms] V0 for 'AMH': 0.0 Time [ms] V01 for 'AMH': 0.0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 6.5 2.2 > stopifnot(max(abs(corCheckAMH[["cor"]]-trCorr)) < eps.tau) > > ## check 2 > AMH3d <- + new("outer_nacopula", copula = setTheta(copAMH, theta0), + comp = 1L, + childCops = list(new("nacopula", + copula = setTheta(copAMH, theta1), + comp = 2:3)) # no childCops + ) > > ## constructor forms of the above: > rr <- onacopula("A", C(0.7135, 1, list(C(0.943, 2:3, NULL)))) > r0 <- onacopula("A", C(0.7135, 1, C(0.943, 2:3, NULL))) > r1 <- onacopula("A", C(0.7135, 1, C(0.943, 2:3, ))) > r2 <- onacopula("AMH", C(0.7135, 1, C(0.943, 2:3 ))) > stopifnot(identical(AMH3d, rr), identical(rr, r0), + identical(r0, r1), identical(r1, r2)) > > ## check > (chkAMH <- chiSq_check_cop(n,N,AMH3d,5)) AMH3d (3d)NAcopula (n=2000): P-value of the chi-square test (N=100): 0.61377 Percentage fulfilling chi^2 rule of thumb: 92.0 Time (user) needed = c(N,n; cop) = 170.0 [ms] > > ## check probability > l <- c(.1, .05, .3) > u <- c(.4, .7, .6) > stopifnot(all.equal(print( prob(AMH3d,l,u)), + probin3dcube(AMH3d,l,u), tolerance=1e-14)) [1] 0.06694093 > > ### Clayton #################################################################### > > theta0 <- 0.5 # tau_{12}=tau_{13}=0.2, tau_{23}=0.5 > theta1 <- 2 > > ## check 1 > corCheckClayton <- corCheck(n,theta0,theta1,copClayton) > trCorr <- rbind(c(1,0.2,0.2), + c(0.2,1,0.5), + c(0.2,0.5,1)) > corCheckout(corCheckClayton,trCorr) Time [ms] V0 for 'Clayton': 0.0 Time [ms] V01 for 'Clayton': 0.0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 25.5 9.6 > stopifnot(max(abs(corCheckClayton[["cor"]]-trCorr)) < eps.tau) > > ## check 2 > Clayton3d <- onacopula("Clayton", C(theta0, 1, C(theta1, 2:3))) > (chkClayton <- chiSq_check_cop(512,100,Clayton3d,5)) Clayton3d (3d)NAcopula (n=512): P-value of the chi-square test (N=100): 0.35079 Percentage fulfilling chi^2 rule of thumb: 33.6 Time (user) needed = c(N,n; cop) = 230.0 [ms] > > ## check probability > stopifnot(all.equal(print( prob(Clayton3d,l,u)), + probin3dcube(Clayton3d,l,u), tolerance=1e-14)) [1] 0.0709828 > > ### Frank ###################################################################### > > theta0 <- 1.8609 # tau_{12}=tau_{13}=0.2, tau_{23}=0.5 > theta1 <- 5.7363 > > ## check 1 > corCheckFrank <- corCheck(n,theta0,theta1,copFrank) > corCheckout(corCheckFrank,trCorr) Time [ms] V0 for 'Frank': 0.0 Time [ms] V01 for 'Frank': 10.0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 3.5 1.5 > stopifnot(max(abs(corCheckFrank[["cor"]]-trCorr)) < eps.tau) > > ## check 2 > Frank3d <- onacopula("F", C(theta0, 1, C(theta1, 2:3))) > (chkFrank <- chiSq_check_cop(n,N,Frank3d,5)) Frank3d (3d)NAcopula (n=2000): P-value of the chi-square test (N=100): 0.25145 Percentage fulfilling chi^2 rule of thumb: 76.0 Time (user) needed = c(N,n; cop) = 720.0 [ms] > > ## check probability > stopifnot(all.equal(print( prob(Frank3d,l,u)), + probin3dcube(Frank3d,l,u), tolerance=1e-14)) [1] 0.07750099 > > ### Gumbel ##################################################################### > > theta0 <- 1.25 > theta1 <- 2 #--> tau_{12}=tau_{13}=0.2, tau_{23}=0.5 > trCorr <- rbind(c(1,0.2,0.2), + c(0.2,1,0.5), + c(0.2,0.5,1)) > ## check 1 > corCheckGumbel <- corCheck(n,theta0,theta1,copGumbel) > corCheckout(corCheckGumbel,trCorr) Time [ms] V0 for 'Gumbel': 0.0 Time [ms] V01 for 'Gumbel': 0.0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 27.5 15.0 > stopifnot(max(abs(corCheckGumbel[["cor"]]-trCorr)) < eps.tau) > > ## check 2 > Gumbel3d <- onacopula("Gumbel", C(theta0, 1, C(theta1, 2:3))) > (chkGumbel <- chiSq_check_cop(n,N,Gumbel3d,5)) Gumbel3d (3d)NAcopula (n=2000): P-value of the chi-square test (N=100): 0.69828 Percentage fulfilling chi^2 rule of thumb: 80.8 Time (user) needed = c(N,n; cop) = 460.0 [ms] > > ## check probability > stopifnot(all.equal(print( prob(Gumbel3d,l,u)), + probin3dcube(Gumbel3d,l,u), tolerance=1e-14)) [1] 0.08035166 > > ### Joe ######################################################################## > > theta0 <- 1.4438#tau_{12}=tau_{13}=0.2, tau_{23}=0.5 > theta1 <- 2.8562 > > ## check 1 > corCheckJoe <- corCheck(n,theta0,theta1,copJoe) > corCheckout(corCheckJoe,trCorr) Time [ms] V0 for 'Joe': 0.0 Time [ms] V01 for 'Joe': 20.0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 41.2 15.3 > stopifnot(max(abs(corCheckJoe[["cor"]]-trCorr)) < eps.tau) > > ## check 2 > Joe3d <- onacopula("J", C(theta0, 1, C(theta1, 2:3))) > (chkJoe <- chiSq_check_cop(n,N,Joe3d,5)) Joe3d (3d)NAcopula (n=2000): P-value of the chi-square test (N=100): 0.63188 Percentage fulfilling chi^2 rule of thumb: 74.4 Time (user) needed = c(N,n; cop) = 700.0 [ms] > > ## check probability > stopifnot(all.equal(print( prob(Joe3d,l,u)), + probin3dcube(Joe3d,l,u), tolerance=1e-14)) [1] 0.08367711 > > ### Examples that check pnacopula() and rnacopula() ############################ > > ## generate output for the examples > prt.stats <- function(c1,c2, rt) { + cat("Time [ms] for generating", n, + "vectors of variates: ", round(1000*rt[1],1), "\n") + prt.tau.diff(c1, c2) ; cat("\n") + } > > ### 3d Ali-Mikhail-Haq copula example ########################################## > > c3 <- onacopula("A", C(0.7135, 1, list(C(0.943, 2:3)))) > > ## basic check > d <- dim(c3) > stopifnot(d == 3, + allComp(c3) == 1:3, + allComp(c3@childCops[[1]]) == 2:3) > > ## test pCopula(., ) {was pnacopula()} > u <- c(.3, .4, .5) > ## with function: > v <- pCopula(u, c3) > ## by hand > psi <- function(t,theta) { (1-theta)/(exp(t)-theta) } > iPsi <- function(t,theta) { log((1-theta*(1-t))/t) } > th0 <- 0.7135 > th1 <- 0.9430 > level1 <- psi(iPsi(u[2],th1) + iPsi(u[3],th1), th1) > level0 <- psi(iPsi(u[1],th0) + iPsi(level1, th0), th0) > stopifnot(all.equal(v, level0, tolerance = 1e-14)) > > ## test rnacopula() > rt <- system.time(rC3 <- rnacopula(n,c3)) > C3 <- cor(rC3,method = "kendall") > trCorr <- rbind(c(1,0.2,0.2), + c(0.2,1,0.3), + c(0.2,0.3,1)) # tau_{12}=tau_{13}=0.2, tau_{23}=0.3 > stopifnot(is.numeric(rC3), is.matrix(rC3), + dim(rC3) == c(n, 3),max(abs(C3-trCorr)) < eps.tau) > prt.stats(C3,trCorr,rt) Time [ms] for generating 2000 vectors of variates: 0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 13.0 6.5 > if(doPlots) { + stopifnot(require("KernSmooth"))## for smoothScatter() + pairs2(rC3, panel = function(...) { par(new = TRUE); smoothScatter(...) }) + } > > ### 2d Clayton copula example ################################################## > > c2 <- onacopula("Clayton", C(0.5, c(1,2))) # no childCops > ## or simply c2 <- onacopula("Clayton", C(0.5, 1:2)) > > ## basic check > d <- dim(c2) > stopifnot(d == 2, + allComp(c2) == 1:2) > > ## test pCopula() > v <- pCopula(c(.3, .4), c2) > stopifnot(all.equal(v, + local( { u1 <- .3; u2 <- .4 + (u1^(-1/2)+u2^(-1/2)-1)^(-2) }), + tolerance = 1e-14)) > > ## test rnacopula() > racopula <- copula:::racopula > set.seed(17) ; rt <- system.time(rC2 <- rnacopula(n,c2)) > set.seed(17) ; rt. <- system.time(rc2 <- racopula (n, c2@copula, d=2)) > stopifnot(identical(rC2, rc2)) > > C2 <- cor(rC2,method = "kendall") > trCorr <- rbind(c(1,0.2), + c(0.2,1)) # tau_{12}=0.2 > stopifnot(is.numeric(rC2), is.matrix(rC2), + dim(rC2) == c(n, 2), max(abs(C2-trCorr)) < eps.tau) > prt.stats(C2,trCorr,rt) Time [ms] for generating 2000 vectors of variates: 0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 2.1 1.1 > if(doPlots) + smoothScatter(rC2) > > ### 3d Clayton copula example ################################################## > > c3 <- onacopula("C", C(0.5, 1, C(2., c(2,3)))) > > ## basic check > d <- dim(c3) > stopifnot(d == 3, + allComp(c3) == 1:3, + allComp(c3@childCops[[1]]) == 2:3) > > ## test pCopula() > v <- pCopula(c(.3, .4, .5), c3) > stopifnot(all.equal(v, + local( { u1 <- .3; u2 <- .4; u3 <- .5 + 1/((1/u2^2 +1/u3^2 -1)^(1/4) -1 +1/sqrt(u1))^2 }), + tolerance = 1e-14)) > > ## test rnacopula() > rt <- system.time(rC3 <- rnacopula(n,c3)) > C3 <- cor(rC3,method = "kendall") > trCorr <- matrix(c(1,0.2,0.2,0.2,1,0.5,0.2,0.5,1),nrow = 3,byrow = TRUE) > # tau_{12}=tau_{13}=0.2, tau_{23}=0.5 > stopifnot(is.numeric(rC3), is.matrix(rC3), + dim(rC3) == c(n, 3),max(abs(C3-trCorr)) < eps.tau) > prt.stats(C3,trCorr,rt) Time [ms] for generating 2000 vectors of variates: 20 Max & Mean distance * 1000 to true pairwise Kendall's taus: 2.2 1.3 > > if(doPlots) + pairs2(rC3, panel = function(...) { par(new = TRUE); smoothScatter(...) }) > > ### 9d Clayton copula example ################################################## > > c9 <- onacopula("Clayton", C(0.5, c(3,6,1), + C(2., c(9,2,7,5), + C(3., c(8,4))))) > c9Lis <- list(0.5, c(3,6,1), + list(list(2., c(9,2,7,5), + list(list(3., c(8,4)))))) > ## consistency onacopula() <-> onacopulaL() : > stopifnot(identical(c9, onacopulaL("Clayton", c9Lis))) > > > ## basic check > d <- dim(c9) > stopifnot(d == 9, + allComp(c9) == c(3,6,1,9,2,7,5,8,4), + allComp(c9@childCops[[1]]) == c(9,2,7,5,8,4), + allComp(c9@childCops[[1]]@childCops[[1]]) == c(8,4)) > > ## test pCopula() > u <- seq(0.1,0.9,by = 0.1) > v <- pCopula(u, c9) > ## by hand > psi <- function(t,theta) { (1+t)^(-1/theta) } > iPsi <- function(t,theta) { t^(-theta) - 1 } > th0 <- 0.5 > th1 <- 2 > th2 <- 3 > level2 <- psi(iPsi(u[8],th2) + iPsi(u[4],th2), th2) > level1 <- psi(iPsi(u[9],th1)+ + iPsi(u[2],th1)+ + iPsi(u[7],th1)+ + iPsi(u[5],th1) + + iPsi(level2, th1), th1) > level0 <- psi(iPsi(u[3],th0)+ + iPsi(u[6],th0)+ + iPsi(u[1],th0)+ + iPsi(level1, th0), th0) > stopifnot(all.equal(v, level0, tolerance = 1e-14)) > > ## test rnacopula() > rt <- system.time(rC9 <- rnacopula(n,c9)) > C9 <- cor(rC9,method = "kendall") > > ## Theoretical values: > ## (11,12,13,14,15,16,17,18,19)=(1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2) > ## (22,23,24,25,26,27,28,29)=(1,0.2,0.5,0.5,0.2,0.5,0.5,0.5) > ## (33,34,35,36,37,38,39)=(1,0.2,0.2,0.2,0.2,0.2,0.2) > ## (44,45,46,47,48,49)=(1,0.5,0.2,0.5,0.6,0.5) > ## (55,56,57,58,59)=(1,0.2,0.5,0.5,0.5) > ## (66,67,68,69)=(1,0.2,0.2,0.2) > ## (77,78,79)=(1,0.5,0.5) > ## (88,89)=(1,0.5) > > C9.true <- rbind(c(1. ,rep(0.2,8)), + c(0.2,1. ,0.2,0.5,0.5,0.2, rep(0.5,3)), + c(0.2,0.2,1. , rep(0.2,6)), + c(0.2,0.5,0.2,1. ,0.5,0.2,0.5,0.6,0.5), + c(0.2,0.5,0.2,0.5,1. ,0.2, rep(0.5,3)), + c(rep(0.2,5), 1. , rep(0.2,3)), + c(0.2,0.5,0.2,0.5,0.5,0.2,1. ,0.5,0.5), + c(0.2,0.5,0.2,0.6,0.5,0.2,0.5,1. ,0.5), + c(0.2,0.5,0.2,0.5,0.5,0.2,0.5,0.5,1. )) > stopifnot(dim(rC9) == c(n, 9), + max(abs(C9-C9.true)) < eps.tau) > prt.stats(C9,C9.true,rt) Time [ms] for generating 2000 vectors of variates: 0 Max & Mean distance * 1000 to true pairwise Kendall's taus: 33.3 11.2 > if(doPlots && dev.interactive(orNone=TRUE)) # "large" + pairs2(rC9, gap = .1, pch = 20, cex = 0.2, col = rgb(.2,.1,.7, alpha = .5), + main = paste0(n," vectors of a ", d,"-dimensional nested Clayton copula")) > > ### 25d Clayton ============================================== > c25 <- onacopula("Clayton", C(0.5, 17, + list(C(2, 20:18), + C(2.5, c(25,23, 8:12)), + C(2.25,c(24,21), C(4, 3:5)), + C(1.5, c(22,15:16), C(1.7, 1:2)), + C(3, c(6:7, 14:13))))) > stopifnot(identical(sort(allComp(c25)), 1:25)) > c25 Nested Archimedean copula ("outer_nacopula" of dim. 25), with slot 'comp' = (17) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (0.5) and 5 child copulas 1) Nested Archimedean copula ("nacopula"), with slot 'comp' = (20, 19, 18) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (2) and *no* child copulas 2) Nested Archimedean copula ("nacopula"), with slot 'comp' = (25, 23, 8, 9, 10, 11, 12) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (2.5) and *no* child copulas 3) Nested Archimedean copula ("nacopula"), with slot 'comp' = (24, 21) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (2.25) and 1 child copula Nested Archimedean copula ("nacopula"), with slot 'comp' = (3, 4, 5) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (4) and *no* child copulas 4) Nested Archimedean copula ("nacopula"), with slot 'comp' = (22, 15, 16) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (1.5) and 1 child copula Nested Archimedean copula ("nacopula"), with slot 'comp' = (1, 2) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (1.7) and *no* child copulas 5) Nested Archimedean copula ("nacopula"), with slot 'comp' = (6, 7, 14, 13) and root 'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (3) and *no* child copulas > stopifnot( + all.equal(pCopula(rep(.01, 25), c25), 0.0001734511294041, tol = 9e-9)# 1.84e-13 + , + all.equal(pCopula(rep(.99, 25), c25), 0.79506048556858, tol = 9e-9)# 3.77e-15 + ) > > ### 125d Clayton copula example ################################################ > > c125 <- onacopula("Clayton", C(0.5, , # no direct components + list(C(2, 1:10), + C(3, 11:40), + C(2, 41:60), + C(2, 61:85), + C(3, 86:105), + C(2,106:125)))) > c125Lis <- list(0.5, integer(0), # <- could use NULL + list(list(2, 1:10), + list(3, 11:40), + list(2, 41:60), + list(2, 61:85), + list(3, 86:105), + list(2,106:125))) > ## consistency onacopula() <-> onacopulaL() : > stopifnot(identical(c125, onacopulaL("C", c125Lis))) > > > > ## basic check > d <- dim(c125) > stopifnot(d == 125, + allComp(c125) == 1:125, + allComp(c125@childCops[[1]]) == 1:10, + allComp(c125@childCops[[2]]) == 11:40, + allComp(c125@childCops[[3]]) == 41:60, + allComp(c125@childCops[[4]]) == 61:85, + allComp(c125@childCops[[5]]) == 86:105, + allComp(c125@childCops[[6]]) == 106:125 + ) > > ## test rnacopula() > rt <- system.time(rC125 <- rnacopula(n,c125)) > stopifnot(is.numeric(rC125), is.matrix(rC125), dim(rC125) == c(n, 125)) > cat("Time elapsed for generating ",n," vectors of variates:\n",sep = "") Time elapsed for generating 2000 vectors of variates: > rt user system elapsed 0.08 0.00 0.08 > summary(p125 <- pCopula(rC125, c125)) Min. 1st Qu. Median Mean 3rd Qu. Max. 4.100e-07 2.423e-03 5.434e-03 7.021e-03 9.965e-03 3.967e-02 > stopifnot(is.finite(p125), + all.equal(range(p125), c(4.13323986e-07, 0.03966520023))# tol=4.9e-11 + , + all.equal(quantile(p125, (1:3)/4, names=FALSE), + c(0.002422534035, 0.005433890506, 0.009965210908)) # tol=1.5e-11 + ) > > > theta <- c(2,8) > copG4 <- onacopulaL("Gumbel", + list(theta[1], NULL, + list(list(theta[2], c(1,2)), + list(theta[2], c(3,4))))) > set.seed(11) > uG4 <- rCopula(1000, copG4) > u4. <- rbind(c(1, 0.5, 1, 0.5), + c(0.8, 0.4, 0.8, 0.5), + c(0.9, 0.5, 0.9, 0.5)) > (pu4 <- pCopula(u4., copula = copG4)) [1] 0.3752142 0.3169733 0.3752142 > > stopifnot( + all.equal( + pu4, c(0.375214227246, 0.316973265328, 0.375214214144), tol = 9e-9)# 8e-13 + , + all.equal(print( + prob(copG4, l = rep(0.9, 4), u = rep(1, 4)) + ), 0.056602230621, tol = 1e-9) + , + ## and the probability of an empty corner is very small + all.equal(print( + prob(copG4, + l = c(0, 0.7, 0, 0.7), + u = c(0.4, 1 , 0.4,1 )) + , digits = 15), 8.832425e-10, tol = 1e-5) + ) [1] 0.05660223 [1] 8.83242534666095e-10 > > ## Less "even" example: > theta <- c(2, 4, 8, 25) > copG8 <- onacopulaL("Gumbel", + list(theta[1], 5:6, + list(list(theta[2], c(1,2,7)), + list(theta[3], 3, list(list(theta[4], c(8,4))))))) > uu <- rCopula(500, copG8) > if(doPlots) + splom2(uu, col = adjustcolor("darkseagreen4", 0.5), cex = 0.25) > summary(puu <- pCopula(uu, copG8)) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000054 0.0305491 0.1466765 0.2474256 0.4116874 0.9984074 > stopifnot(is.finite(puu), + all.equal(min(puu), 5.353253447e-06, tol= 9e-9) # 2.33e-12 + , + all.equal(max(puu), 0.99840742713, tol= 9e-9) # 2.34e-12 + ) > > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 9.21 0.2 9.42 NA NA > > proc.time() user system elapsed 9.21 0.20 9.42