R Under development (unstable) (2023-12-04 r85659 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## Copyright (C) 2016 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan > ## > ## This program is free software; you can redistribute it and/or modify it under > ## the terms of the GNU General Public License as published by the Free Software > ## Foundation; either version 3 of the License, or (at your option) any later > ## version. > ## > ## This program is distributed in the hope that it will be useful, but WITHOUT > ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS > ## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more > ## details. > ## > ## You should have received a copy of the GNU General Public License along with > ## this program; if not, see . > > ## Tests for Explicit Copulas in combination with > ## rotCopula, mixCopula, and khoudrajiCopula > > library(copula) > source(system.file("Rsource", "utils.R", package="copula", mustWork=TRUE)) Loading required package: tools > ##-> assertError(), assert.EQ(), ... showProc.time() > isExplicit <- copula:::isExplicit > (doExtras <- copula:::doExtras()) [1] FALSE > options(warn = 1)# print warnings as they happen > > > ## FIXME? add "revealing" column names to the resulting matrices > exprDerivs <- function(copula, u) { + cbind(copula:::dCdu (copula, u), + copula:::dCdtheta (copula, u), + copula:::dlogcdu (copula, u), + copula:::dlogcdtheta(copula, u)) + } > > numeDerivs <- function(copula, u) { + cbind(copula:::dCduNumer (copula, u, may.warn = FALSE), + copula:::dCdthetaNumer (copula, u, may.warn = FALSE), + copula:::dlogcduNumer (copula, u), + copula:::dlogcdthetaNumer(copula, u)) + } > > set.seed(123) > showProc.time() Time (user system elapsed): 0 0 0 > > mC <- mixCopula(list(gumbelCopula(2.5, dim = 2), + claytonCopula(pi, dim = 2), + indepCopula(dim = 2)), + fixParam(c(2,2,4)/8, c(TRUE, TRUE, TRUE))) > mC mixCopula from 3 components (Gmbc, Clyc, Indc) with weights: (0.25, 0.25, 0.50) Dimension: 2 Parameters (partly fixed, see ':='): m1.alpha = 2.500000 m2.alpha = 3.141593 w1 := 0.250000 w2 := 0.250000 w3 := 0.500000 > > u <- rCopula(100, mC) > u1 <- (0:16)/16 # includes {0,1} --> boundary corners & edges > u12 <- as.matrix(expand.grid(u1=u1, u2=u1, KEEP.OUT.ATTRS=FALSE)) > > ## verify density and df in comparison with expression based evaluation > ## dExplicit..algr() is NaN at boundary (u1 or u2 == 0 or both == 1), and is continuous at other boundaries > ## dC...() is := 0 there: > dC12 <- dCopula(u12, mC) > dE12 <- copula:::dExplicitCopula.algr(u12, mC) > i.n <- is.na(dE12) > i.1 <- u12 == 1 > stopifnot(identical(i.n, + u12[,1] == 0 | u12[,2] == 0 | (i.1[,1] & i.1[,2]))) > ii <- !i.n & !i.1[,1] & !i.1[,2] > stopifnot(all.equal(dC12[ii], dE12[ii])) > stopifnot(all.equal(pCopula(u12, mC), copula:::pExplicitCopula.algr(u12, mC))) > showProc.time() Time (user system elapsed): 0.04 0 0.05 > > ## derivatives > derExp <- exprDerivs(mC, u) > showProc.time() Time (user system elapsed): 0.02 0 0.02 > > if(doExtras) { + derNum <- numeDerivs(mC, u) + ## FIXME: dlogcdu and dlogcdtheta do not match the numerical derivatives! + ## Could the numerical derivates be wrong??? Why??? + print(cbind(sapply(1:ncol(derExp), function(i) all.equal(derExp[,i], derNum[,i]))), + quote=FALSE) + ## very bad from [5] on .. + showProc.time() + } > > ## benchmark > ## library(microbenchmark) > ## microbenchmark(dCopula(u, mC), copula:::dExplicitCopula.algr(u, mC)) > ## microbenchmark(pCopula(u, mC), copula:::pExplicitCopula.algr(u, mC)) > > dCd <- copula:::dCdu(mC, u12) > if(dev.interactive(orNone=TRUE)) { + image(u1,u1, matrix(dCd[,1], 16+1)) + image(u1,u1, matrix(dCd[,2], 16+1)) + } > head(cbind(copula:::dCdu(mC, u), copula:::dCdtheta(mC, u), + copula:::dlogcdu(mC, u), copula:::dlogcdtheta(mC, u))) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.4239764 0.33630909 9.224860e-03 0.0040431376 0.2726189 -1.5074644 [2,] 0.6659714 0.51365201 8.369030e-03 0.0046841141 1.2944452 -0.7795907 [3,] 0.2226718 0.71896413 5.801589e-03 0.0023172852 -2.3256517 2.6063056 [4,] 0.4961576 0.37012542 9.797473e-03 0.0046189657 0.6297653 -1.2699945 [5,] 0.9587609 0.09279068 5.896722e-05 0.0000358527 0.3082482 -0.2891975 [6,] 0.1468872 0.92697224 4.158990e-04 0.0002900826 -0.8519112 0.9271734 [,7] [,8] [1,] 0.09351527 0.10152763 [2,] 0.11740830 0.03889536 [3,] -0.04601827 -0.04515029 [4,] 0.09611079 0.07686739 [5,] -0.02990324 -0.01902671 [6,] -0.07855317 -0.05322670 > > ## rotate it > mC.surv <- rotCopula(mC) > isExplicit(mC.surv) [1] TRUE > > stopifnot(all.equal(dCopula(u, mC.surv), dCopula(1 - u, mC))) > ## rotate it back > stopifnot(all.equal(dCopula(u, rotCopula(mC.surv)), dCopula(u, mC))) > showProc.time() Time (user system elapsed): 0.05 0 0.04 > > ## derivatives > derExpS <- exprDerivs(mC.surv, u) Warning in copula:::dCdtheta(copula, u) : dCdtheta() returned NaN in column(s) 1 for this explicit copula; falling back to numeric derivative for those columns > ## (The only numerical derivative case we compute when doExtras is FALSE : ) > derNumS <- numeDerivs(mC.surv, u) Warning in copula:::dlogcduNumer(copula, u) : Function dlogcdu() not implemented for "rotExplicitCopula" copulas; numerical differentiation used Warning in copula:::dlogcdthetaNumer(copula, u) : Function dlogcdtheta() not implemented for "rotExplicitCopula" copulas; numerical differentiation used > ## tol=0: show the "closeness" achieved: > sapply(1:ncol(derExpS), function(i) all.equal(derExpS[,i], derNumS[,i], tol=0)) # [1] "Mean relative difference: 0.0003624512" [2] "Mean relative difference: 0.000145243" [3] "TRUE" [4] "Mean relative difference: 1.429454e-12" [5] "Mean relative difference: 5.991181e-10" [6] "Mean relative difference: 4.844984e-10" [7] "Mean relative difference: 8.403848e-10" [8] "Mean relative difference: 2.206548e-09" > stopifnot(sapply(1:ncol(derExpS), function(i) all.equal(derExpS[,i], derNumS[,i], + tol = 1e-3))) > showProc.time() Time (user system elapsed): 1.5 0.01 1.52 > > > ## nest the survival copula in a khoudraji Copula > k.mC.g <- khoudrajiCopula(mC.surv, gumbelCopula(3, dim = 2), c(.2, .9)) > isExplicit(k.mC.g) [1] TRUE > k.mC.g Khoudraji copula, dim. d = 2, constructed from Rotated copula constructed from mixCopula from 3 components Gumbel copula Dimension: 2 Parameters (partly fixed, see ':='): c1.m1.alpha = 2.500000 c1.m2.alpha = 3.141593 c1.w1 := 0.250000 c1.w2 := 0.250000 c1.w3 := 0.500000 c2.alpha = 3.000000 shape1 = 0.200000 shape2 = 0.900000 > U <- rCopula(100000, k.mC.g) > > ## check cdf with C.n > > ## Must work for d=1 [e.g. in 'gofCopula::gofKendallCvM()]: > u1 <- as.matrix((0:7)/7) > Cuu <- C.n(u1,u1) ## <- did not work for 1-dim. u[] matrix for a while > stopifnot(all.equal(Cuu, c(0:3,5:8)/8, tol = 1e-15)) > ## NOTE(MM): From the above result I think the finite-sample definition of C.n() > ## ---- "sucks": It is not equidistant when u[] is. > > > ## cdf versus C.n > stopifnot(max(abs(pCopula(u, k.mC.g) - C.n(u, U))) < 0.002) > > ## pdf versus kde2d > require(MASS) Loading required package: MASS > kde <- kde2d(U[,1], U[,2], n = 9, lims = c(0.1, 0.9, 0.1, 0.9)) > max(abs(dCopula(u, k.mC.g) / c(kde$z) - 1)) ## relative difference < 0.185 Warning in dCopula(u, k.mC.g)/c(kde$z) : longer object length is not a multiple of shorter object length [1] 6.010969 > showProc.time() Time (user system elapsed): 0.81 0.06 0.87 > > ## derivatives > derE.k <- exprDerivs(k.mC.g, u) Warning in copula:::dCdtheta(copula, u) : dCdtheta() returned NaN in column(s) 1 for this explicit copula; falling back to numeric derivative for those columns Warning in copula:::dlogcdtheta(copula, u) : dlogcdtheta() returned NaN in column(s) 1 for this explicit copula; falling back to numeric derivative for those columns > showProc.time() Time (user system elapsed): 0.34 0.04 0.38 > > if(doExtras) { + derN.k <- numeDerivs(k.mC.g, u) + print(cbind(sapply(1:ncol(derE.k), + function(i) all.equal(derE.k[,i], derN.k[,i], tol = 0))), + quote=FALSE) + ## portable ? -- why is [7] so bad ? + stopifnot(sapply(1:2, + function(i) all.equal(derE.k[,i], derN.k[,i], tol = 2e-3)), + local({ i <- 7 ; all.equal(derE.k[,i], derN.k[,i], tol = 4e-3) }), + sapply(c(3:6, 8:ncol(derE.k)), + function(i) all.equal(derE.k[,i], derN.k[,i], tol = 1e-6)) + ) + showProc.time() + } # only if ..xtra > > ## nest k.mC.g and mC in a mixture copula > m.k.m <- mixCopula(list(mC, k.mC.g), c(.5, .5)) > m.k.m mixCopula from 2 components (mf3c , KccfRccfmf3cGc) with weights: (0.5, 0.5) Dimension: 2 Parameters (partly fixed, see ':='): m1.m1.alpha = 2.500000 m1.m2.alpha = 3.141593 m1.w1 := 0.250000 m1.w2 := 0.250000 m1.w3 := 0.500000 m2.c1.m1.alpha = 2.500000 m2.c1.m2.alpha = 3.141593 m2.c1.w1 := 0.250000 m2.c1.w2 := 0.250000 m2.c1.w3 := 0.500000 m2.c2.alpha = 3.000000 m2.shape1 = 0.200000 m2.shape2 = 0.900000 w1 = 0.500000 w2 = 0.500000 > U <- rCopula(10000, m.k.m) > stopifnot(max(abs(pCopula(u, m.k.m) - C.n(u, U))) < 0.02) > > ## a monster from m.k.m and mC.surv in khoudraji > monster <- khoudrajiCopula(m.k.m, mC.surv, c(.2, .8)) > monster Khoudraji copula, dim. d = 2, constructed from mixCopula from 2 components Rotated copula constructed from mixCopula from 3 components Dimension: 2 Parameters (partly fixed, see ':='): c1.m1.m1.alpha = 2.500000 c1.m1.m2.alpha = 3.141593 c1.m1.w1 := 0.250000 c1.m1.w2 := 0.250000 c1.m1.w3 := 0.500000 c1.m2.c1.m1.alpha = 2.500000 c1.m2.c1.m2.alpha = 3.141593 c1.m2.c1.w1 := 0.250000 c1.m2.c1.w2 := 0.250000 c1.m2.c1.w3 := 0.500000 c1.m2.c2.alpha = 3.000000 c1.m2.shape1 = 0.200000 c1.m2.shape2 = 0.900000 c1.w1 = 0.500000 c1.w2 = 0.500000 c2.m1.alpha = 2.500000 c2.m2.alpha = 3.141593 c2.w1 := 0.250000 c2.w2 := 0.250000 c2.w3 := 0.500000 shape1 = 0.200000 shape2 = 0.800000 > U <- rCopula(10000, monster) > stopifnot(max(abs(pCopula(u, monster) - C.n(u, U))) < 0.007) > showProc.time() Time (user system elapsed): 0.14 0 0.14 > > ## derivatives > derE.M <- exprDerivs(monster, u) Warning in copula:::dCdtheta(copula, u) : dCdtheta() returned NaN in column(s) 3, 10 for this explicit copula; falling back to numeric derivative for those columns Warning in copula:::dlogcdtheta(copula, u) : dlogcdtheta() returned NaN in column(s) 3, 10 for this explicit copula; falling back to numeric derivative for those columns > showProc.time() Time (user system elapsed): 1.85 0.01 1.86 > if(doExtras) { + derN.M <- numeDerivs(monster, u) + print(cbind(sapply(1:ncol(derE.M), function(i) all.equal(derE.M[,i], derN.M[,i], tol=0))), + quote = FALSE) + showProc.time() + } # only if ..xtra > > > ## rotate the monster > rM <- rotCopula(monster, flip=c(TRUE, FALSE)) > isExplicit(rM) [1] TRUE > rM Rotated copula constructed from Khoudraji copula, dim. d = 2, constructed from mixCopula from 2 components Rotated copula constructed from mixCopula from 3 components Dimension: 2 Parameters (partly fixed, see ':='): c1.m1.m1.alpha = 2.500000 c1.m1.m2.alpha = 3.141593 c1.m1.w1 := 0.250000 c1.m1.w2 := 0.250000 c1.m1.w3 := 0.500000 c1.m2.c1.m1.alpha = 2.500000 c1.m2.c1.m2.alpha = 3.141593 c1.m2.c1.w1 := 0.250000 c1.m2.c1.w2 := 0.250000 c1.m2.c1.w3 := 0.500000 c1.m2.c2.alpha = 3.000000 c1.m2.shape1 = 0.200000 c1.m2.shape2 = 0.900000 c1.w1 = 0.500000 c1.w2 = 0.500000 c2.m1.alpha = 2.500000 c2.m2.alpha = 3.141593 c2.w1 := 0.250000 c2.w2 := 0.250000 c2.w3 := 0.500000 shape1 = 0.200000 shape2 = 0.800000 > > U <- rCopula(10000, rM) > max(abs(pCopula(u, rM) - C.n(u, U))) # < 0.005 [1] 0.005771696 > stopifnot(identical(dCopula(u, rM), dCopula(cbind(1 - u[,1], u[,2]), monster))) > ## derivatives > derE.rM <- exprDerivs(rM, u) Warning in copula:::dCdtheta(copula, u) : dCdtheta() returned NaN in column(s) 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13 for this explicit copula; falling back to numeric derivative for those columns Warning in copula:::dlogcdtheta(copula, u) : dlogcdtheta() returned NaN in column(s) 3, 10 for this explicit copula; falling back to numeric derivative for those columns > showProc.time() Time (user system elapsed): 1.79 0 1.8 > if(doExtras) { + derN.rM <- numeDerivs(rM, u) + ## show diff's: + print(cbind(sapply(1:ncol(derE.rM), function(i) all.equal(derE.rM[,i], derN.rM[,i], tol=0))), + quote = FALSE) + showProc.time() + } # only if ..xtra > > ########################################################## > ## joeCopula > > jC <- joeCopula(4, dim = 2) > > ## "derNum <- cbind" > ## pdf/cdf > stopifnot(all.equal(dCopula(u, jC), copula:::dExplicitCopula.algr(u, jC))) > stopifnot(all.equal(pCopula(u, jC), copula:::pExplicitCopula.algr(u, jC))) > showProc.time() Time (user system elapsed): 0 0 0 > > ## derivatives -- are fast here > derE.j <- exprDerivs(jC, u) > derN.j <- numeDerivs(jC, u) Warning in copula:::dlogcduNumer(copula, u) : Function dlogcdu() not implemented for "joeCopula" copulas; numerical differentiation used Warning in copula:::dlogcdthetaNumer(copula, u) : Function dlogcdtheta() not implemented for "joeCopula" copulas; numerical differentiation used > sapply(1:ncol(derE.j), function(i) all.equal(derE.j[,i], derN.j[,i], tol=0)) [1] "Mean relative difference: 0.0003640905" [2] "Mean relative difference: 9.717875e-05" [3] "Mean relative difference: 3.033551e-13" [4] "Mean relative difference: 3.59782e-10" [5] "Mean relative difference: 4.718684e-10" [6] "Mean relative difference: 6.362816e-10" > showProc.time() Time (user system elapsed): 0.52 0 0.51 > > ## rotate it > rJ <- rotCopula(jC, flip=c(TRUE, FALSE)) > derE.rJ <- exprDerivs(rJ, u) Warning in copula:::dCdtheta(copula, u) : dCdtheta() returned NaN in column(s) 1 for this explicit copula; falling back to numeric derivative for those columns > derN.rJ <- numeDerivs(rJ, u) > sapply(1:ncol(derE.rJ), function(i) all.equal(derE.rJ[,i], derN.rJ[,i], tol=0)) [1] "Mean relative difference: 0.0004290902" [2] "Mean relative difference: 0.000516896" [3] "TRUE" [4] "Mean relative difference: 4.302875e-09" [5] "Mean relative difference: 1.161346e-09" [6] "Mean relative difference: 3.264156e-09" > showProc.time() Time (user system elapsed): 1.08 0.03 1.11 > > ## mix it with k.mc.g > hiro <- mixCopula(list(jC, k.mC.g), c(.5, .5)) > hiro mixCopula from 2 components (Jcpl , KccfRccfmf3cGc) with weights: (0.5, 0.5) Dimension: 2 Parameters (partly fixed, see ':='): m1.alpha = 4.000000 m2.c1.m1.alpha = 2.500000 m2.c1.m2.alpha = 3.141593 m2.c1.w1 := 0.250000 m2.c1.w2 := 0.250000 m2.c1.w3 := 0.500000 m2.c2.alpha = 3.000000 m2.shape1 = 0.200000 m2.shape2 = 0.900000 w1 = 0.500000 w2 = 0.500000 > > ########################################################## > > proc.time() user system elapsed 9.20 0.29 9.48