R Under development (unstable) (2023-12-04 r85659 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## Copyright (C) 2012, 2015 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
> ##
> ## This program is free software; you can redistribute it and/or modify it under
> ## the terms of the GNU General Public License as published by the Free Software
> ## Foundation; either version 3 of the License, or (at your option) any later
> ## version.
> ##
> ## This program is distributed in the hope that it will be useful, but WITHOUT
> ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
> ## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
> ## details.
> ##
> ## You should have received a copy of the GNU General Public License along with
> ## this program; if not, see .
>
> ###__ Estimation methods for Archimedean Copulas __
>
> require(copula)
Loading required package: copula
>
> (doExtras <- copula:::doExtras())
[1] FALSE
>
> ## From source(system.file("test-tools.R", package = "Matrix")) :
> showProc.time <- local({
+ pct <- proc.time()
+ function() { ## CPU elapsed __since last called__
+ ot <- pct ; pct <<- proc.time()
+ cat('Time elapsed: ', (pct - ot)[1:3],'\n')
+ }
+ })
>
> ### We have other implicit estimation "tests" in demo(estimation.gof)
> ## i.e., ../demo/estimation.gof.R
> ## ~~~~~~~~~~~~~~~~~~~~~~~~
>
> ## Frank & mle ---- log-density is *REALLY* not good enough:
> ## -----------
> ## at least not for "GoF" where we may have "tail-dependent"
> ## observations which are highly improbable under Frank and would
> ## "need" a very large theta :
>
> p.log.f <- function(t0, t1, n.th = 256,
+ thet.vec = seq(t0, t1, length.out= n.th),
+ d, u0, uu = rbind(rep(u0, length.out = d)),
+ cop = "Frank", legend.x = "bottomright",
+ col = mapply(adjustcolor, col=c(1,3,2,4,1,2), alpha=c(2, 5:7, 4,2)/10),
+ lwd = c(5,4,3,1,5,5), lty = 1:6)
+ {
+ stopifnot(d == as.integer(d), length(d) == 1, d >= 2,
+ NCOL(uu) == d, is.numeric(thet.vec), length(thet.vec) > 1)
+ cop <- onacopulaL(getAcop(cop), list(NA, 1:d))
+
+ stopifnot(is.function(.f. <- cop@copula@dacopula))
+ ## meths <- c("negI-s-Stirling", "negI-s-Eulerian")
+ meths <- local({m <- eval(formals(polylog)$method);m[grep("^negI-s", m)]})
+ l.arr <- sapply(meths, function(meth)
+ {
+ sapply(c(FALSE,TRUE), function(Li.log)
+ sapply(thet.vec, .f., u = uu, log=TRUE,
+ method = meth, Li.log.arg=Li.log))
+ }, simplify = "array")
+ dim(l.arr) <- local({D <- dim(l.arr); c(D[1], prod(D[-1]))})
+ ## n x 4
+ nms <- c(t(outer(substring(meths, 8),
+ paste("Li_n(", c("", "log(arg)"), ")", sep=""),
+ ##paste("Li.log.A=",c(FALSE,TRUE),sep=""),
+ paste, sep="_")))
+ colnames(l.arr) <- nms
+
+ tit <- bquote(.(cop@copula@name)*" copula - log density " ~~
+ log~f(theta, bold(u)[d==.(d)]))
+ matplot(thet.vec, l.arr, type = "l", lwd=lwd, col=col, lty=lty,
+ main = tit, xlab=expression(theta), ylab = expression(log~f(theta, .)))
+ legend(legend.x, nms, col=col, lwd=lwd, lty=lty,
+ title = "polylog(.., method = \"*\")", inset = .01)
+ mkU <- function(u, n1 = 4, n2 = 2) {
+ n <- length(u <- c(u))
+ cu <- if(n > (n1+n2)) ## use "..."
+ c(format(head(u, n1)), "...", format(tail(u, n2))) else format(u)
+ paste("(", paste(cu, collapse = ", "), ")", sep="")
+ }
+ mtext(bquote(bold(u)[d==.(d)] == .(mkU(uu))), line=1/8)
+ invisible(structure(cbind(theta = thet.vec, l.arr),
+ u = uu, dacopula = .f.))
+ }
>
> unattr <- function(obj) { mostattributes(obj) <- NULL ; obj }
> show. <- function(pmat) unattr(pmat)[, c(1,3,5,7)]
>
> if(!dev.interactive(orNone=TRUE)) pdf("estim-ex.pdf")
>
> th <- seq(1,60, by=1/4)
> show.(m1 <- p.log.f(thet.vec = th, d = 5, u0 = .987))
theta Stirling_Li_n(log(arg)) Eulerian_Li_n(log(arg))
[1,] 1.00 4.071523 4.071523
[2,] 1.25 4.586197 4.586197
[3,] 1.50 5.038015 5.038015
[4,] 1.75 5.441197 5.441197
[5,] 2.00 5.805090 5.805090
[6,] 2.25 6.136270 6.136270
[7,] 2.50 6.439601 6.439601
[8,] 2.75 6.718831 6.718831
[9,] 3.00 6.976946 6.976946
[10,] 3.25 7.216378 7.216378
[11,] 3.50 7.439159 7.439159
[12,] 3.75 7.647008 7.647008
[13,] 4.00 7.841402 7.841402
[14,] 4.25 8.023624 8.023624
[15,] 4.50 8.194793 8.194793
[16,] 4.75 8.355900 8.355900
[17,] 5.00 8.507818 8.507818
[18,] 5.25 8.651327 8.651327
[19,] 5.50 8.787122 8.787122
[20,] 5.75 8.915827 8.915827
[21,] 6.00 9.038000 9.038000
[22,] 6.25 9.154146 9.154146
[23,] 6.50 9.264720 9.264720
[24,] 6.75 9.370133 9.370133
[25,] 7.00 9.470757 9.470757
[26,] 7.25 9.566930 9.566930
[27,] 7.50 9.658960 9.658960
[28,] 7.75 9.747128 9.747128
[29,] 8.00 9.831687 9.831687
[30,] 8.25 9.912872 9.912872
[31,] 8.50 9.990896 9.990896
[32,] 8.75 10.065956 10.065956
[33,] 9.00 10.138231 10.138231
[34,] 9.25 10.207887 10.207887
[35,] 9.50 10.275075 10.275075
[36,] 9.75 10.339938 10.339938
[37,] 10.00 10.402604 10.402604
[38,] 10.25 10.463195 10.463195
[39,] 10.50 10.521822 10.521822
[40,] 10.75 10.578587 10.578587
[41,] 11.00 10.633589 10.633589
[42,] 11.25 10.686915 10.686915
[43,] 11.50 10.738650 10.738650
[44,] 11.75 10.788871 10.788871
[45,] 12.00 10.837652 10.837652
[46,] 12.25 10.885060 10.885060
[47,] 12.50 10.931159 10.931159
[48,] 12.75 10.976009 10.976009
[49,] 13.00 11.019666 11.019666
[50,] 13.25 11.062183 11.062183
[51,] 13.50 11.103609 11.103609
[52,] 13.75 11.143991 11.143991
[53,] 14.00 11.183374 11.183374
[54,] 14.25 11.221798 11.221798
[55,] 14.50 11.259304 11.259304
[56,] 14.75 11.295927 11.295927
[57,] 15.00 11.331704 11.331704
[58,] 15.25 11.366667 11.366667
[59,] 15.50 11.400849 11.400849
[60,] 15.75 11.434278 11.434278
[61,] 16.00 11.466983 11.466983
[62,] 16.25 11.498991 11.498991
[63,] 16.50 11.530328 11.530328
[64,] 16.75 11.561018 11.561018
[65,] 17.00 11.591085 11.591085
[66,] 17.25 11.620549 11.620549
[67,] 17.50 11.649433 11.649433
[68,] 17.75 11.677756 11.677756
[69,] 18.00 11.705537 11.705537
[70,] 18.25 11.732795 11.732795
[71,] 18.50 11.759548 11.759548
[72,] 18.75 11.785811 11.785811
[73,] 19.00 11.811601 11.811601
[74,] 19.25 11.836932 11.836932
[75,] 19.50 11.861821 11.861821
[76,] 19.75 11.886280 11.886280
[77,] 20.00 11.910323 11.910323
[78,] 20.25 11.933963 11.933963
[79,] 20.50 11.957212 11.957212
[80,] 20.75 11.980082 11.980082
[81,] 21.00 12.002585 12.002585
[82,] 21.25 12.024730 12.024730
[83,] 21.50 12.046530 12.046530
[84,] 21.75 12.067993 12.067993
[85,] 22.00 12.089130 12.089130
[86,] 22.25 12.109950 12.109950
[87,] 22.50 12.130461 12.130461
[88,] 22.75 12.150673 12.150673
[89,] 23.00 12.170593 12.170593
[90,] 23.25 12.190231 12.190231
[91,] 23.50 12.209593 12.209593
[92,] 23.75 12.228686 12.228686
[93,] 24.00 12.247519 12.247519
[94,] 24.25 12.266098 12.266098
[95,] 24.50 12.284430 12.284430
[96,] 24.75 12.302521 12.302521
[97,] 25.00 12.320377 12.320377
[98,] 25.25 12.338004 12.338004
[99,] 25.50 12.355409 12.355409
[100,] 25.75 12.372597 12.372597
[101,] 26.00 12.389573 12.389573
[102,] 26.25 12.406342 12.406342
[103,] 26.50 12.422910 12.422910
[104,] 26.75 12.439282 12.439282
[105,] 27.00 12.455462 12.455462
[106,] 27.25 12.471455 12.471455
[107,] 27.50 12.487266 12.487266
[108,] 27.75 12.502898 12.502898
[109,] 28.00 12.518356 12.518356
[110,] 28.25 12.533644 12.533644
[111,] 28.50 12.548766 12.548766
[112,] 28.75 12.563725 12.563725
[113,] 29.00 12.578527 12.578527
[114,] 29.25 12.593173 12.593173
[115,] 29.50 12.607667 12.607667
[116,] 29.75 12.622014 12.622014
[117,] 30.00 12.636216 12.636216
[118,] 30.25 12.650276 12.650276
[119,] 30.50 12.664197 12.664197
[120,] 30.75 12.677984 12.677984
[121,] 31.00 12.691637 12.691637
[122,] 31.25 12.705161 12.705161
[123,] 31.50 12.718557 12.718557
[124,] 31.75 12.731830 12.731830
[125,] 32.00 12.744981 12.744981
[126,] 32.25 12.758012 12.758012
[127,] 32.50 12.770927 12.770927
[128,] 32.75 12.783727 12.783727
[129,] 33.00 12.796416 12.796416
[130,] 33.25 12.808995 12.808995
[131,] 33.50 12.821466 12.821466
[132,] 33.75 12.833832 12.833832
[133,] 34.00 12.846095 12.846095
[134,] 34.25 12.858256 12.858256
[135,] 34.50 12.870319 12.870319
[136,] 34.75 12.882284 12.882284
[137,] 35.00 12.894153 12.894153
[138,] 35.25 12.905929 12.905929
[139,] 35.50 12.917614 12.917614
[140,] 35.75 12.929208 12.929208
[141,] 36.00 12.940714 12.940714
[142,] 36.25 12.952134 12.952134
[143,] 36.50 12.963468 12.963468
[144,] 36.75 12.974719 12.974719
[145,] 37.00 12.985888 12.985888
[146,] 37.25 12.996977 12.996977
[147,] 37.50 13.007986 13.007986
[148,] 37.75 13.018919 13.018919
[149,] 38.00 13.029775 13.029775
[150,] 38.25 13.040556 13.040556
[151,] 38.50 13.051264 13.051264
[152,] 38.75 13.061900 13.061900
[153,] 39.00 13.072465 13.072465
[154,] 39.25 13.082961 13.082961
[155,] 39.50 13.093388 13.093388
[156,] 39.75 13.103748 13.103748
[157,] 40.00 13.114041 13.114041
[158,] 40.25 13.124270 13.124270
[159,] 40.50 13.134436 13.134436
[160,] 40.75 13.144538 13.144538
[161,] 41.00 13.154579 13.154579
[162,] 41.25 13.164559 13.164559
[163,] 41.50 13.174480 13.174480
[164,] 41.75 13.184341 13.184341
[165,] 42.00 13.194146 13.194146
[166,] 42.25 13.203893 13.203893
[167,] 42.50 13.213585 13.213585
[168,] 42.75 13.223222 13.223222
[169,] 43.00 13.232804 13.232804
[170,] 43.25 13.242334 13.242334
[171,] 43.50 13.251811 13.251811
[172,] 43.75 13.261237 13.261237
[173,] 44.00 13.270612 13.270612
[174,] 44.25 13.279938 13.279938
[175,] 44.50 13.289214 13.289214
[176,] 44.75 13.298442 13.298442
[177,] 45.00 13.307622 13.307622
[178,] 45.25 13.316756 13.316756
[179,] 45.50 13.325843 13.325843
[180,] 45.75 13.334885 13.334885
[181,] 46.00 13.343882 13.343882
[182,] 46.25 13.352835 13.352835
[183,] 46.50 13.361745 13.361745
[184,] 46.75 13.370612 13.370612
[185,] 47.00 13.379436 13.379436
[186,] 47.25 13.388220 13.388220
[187,] 47.50 13.396962 13.396962
[188,] 47.75 13.405664 13.405664
[189,] 48.00 13.414326 13.414326
[190,] 48.25 13.422949 13.422949
[191,] 48.50 13.431533 13.431533
[192,] 48.75 13.440080 13.440080
[193,] 49.00 13.448589 13.448589
[194,] 49.25 13.457061 13.457061
[195,] 49.50 13.465496 13.465496
[196,] 49.75 13.473896 13.473896
[197,] 50.00 13.482260 13.482260
[198,] 50.25 13.490589 13.490589
[199,] 50.50 13.498883 13.498883
[200,] 50.75 13.507144 13.507144
[201,] 51.00 13.515371 13.515371
[202,] 51.25 13.523565 13.523565
[203,] 51.50 13.531726 13.531726
[204,] 51.75 13.539855 13.539855
[205,] 52.00 13.547952 13.547952
[206,] 52.25 13.556018 13.556018
[207,] 52.50 13.564053 13.564053
[208,] 52.75 13.572058 13.572058
[209,] 53.00 13.580032 13.580032
[210,] 53.25 13.587976 13.587976
[211,] 53.50 13.595892 13.595892
[212,] 53.75 13.603778 13.603778
[213,] 54.00 13.611635 13.611635
[214,] 54.25 13.619465 13.619465
[215,] 54.50 13.627266 13.627266
[216,] 54.75 13.635040 13.635040
[217,] 55.00 13.642787 13.642787
[218,] 55.25 13.650507 13.650507
[219,] 55.50 13.658200 13.658200
[220,] 55.75 13.665867 13.665867
[221,] 56.00 13.673508 13.673508
[222,] 56.25 13.681124 13.681124
[223,] 56.50 13.688715 13.688715
[224,] 56.75 13.696280 13.696280
[225,] 57.00 13.703821 13.703821
[226,] 57.25 13.711338 13.711338
[227,] 57.50 13.718830 13.718830
[228,] 57.75 13.726299 13.726299
[229,] 58.00 13.733744 13.733744
[230,] 58.25 13.741166 13.741166
[231,] 58.50 13.748566 13.748566
[232,] 58.75 13.755942 13.755942
[233,] 59.00 13.763296 13.763296
[234,] 59.25 13.770628 13.770628
[235,] 59.50 13.777938 13.777938
[236,] 59.75 13.785227 13.785227
[237,] 60.00 13.792494 13.792494
asymp-w_Li_n(log(arg))
[1,] 4.071520
[2,] 4.586196
[3,] 5.038015
[4,] 5.441197
[5,] 5.805090
[6,] 6.136270
[7,] 6.439601
[8,] 6.718831
[9,] 6.976946
[10,] 7.216378
[11,] 7.439159
[12,] 7.647008
[13,] 7.841402
[14,] 8.023624
[15,] 8.194793
[16,] 8.355900
[17,] 8.507818
[18,] 8.651327
[19,] 8.787122
[20,] 8.915827
[21,] 9.038000
[22,] 9.154146
[23,] 9.264720
[24,] 9.370133
[25,] 9.470757
[26,] 9.566930
[27,] 9.658960
[28,] 9.747128
[29,] 9.831687
[30,] 9.912872
[31,] 9.990896
[32,] 10.065956
[33,] 10.138231
[34,] 10.207887
[35,] 10.275075
[36,] 10.339938
[37,] 10.402604
[38,] 10.463195
[39,] 10.521822
[40,] 10.578587
[41,] 10.633589
[42,] 10.686915
[43,] 10.738650
[44,] 10.788871
[45,] 10.837652
[46,] 10.885060
[47,] 10.931159
[48,] 10.976009
[49,] 11.019666
[50,] 11.062183
[51,] 11.103609
[52,] 11.143991
[53,] 11.183374
[54,] 11.221798
[55,] 11.259304
[56,] 11.295927
[57,] 11.331704
[58,] 11.366667
[59,] 11.400849
[60,] 11.434278
[61,] 11.466983
[62,] 11.498991
[63,] 11.530328
[64,] 11.561018
[65,] 11.591085
[66,] 11.620549
[67,] 11.649433
[68,] 11.677756
[69,] 11.705537
[70,] 11.732795
[71,] 11.759548
[72,] 11.785811
[73,] 11.811601
[74,] 11.836932
[75,] 11.861821
[76,] 11.886280
[77,] 11.910323
[78,] 11.933963
[79,] 11.957212
[80,] 11.980082
[81,] 12.002585
[82,] 12.024730
[83,] 12.046530
[84,] 12.067993
[85,] 12.089130
[86,] 12.109950
[87,] 12.130461
[88,] 12.150673
[89,] 12.170593
[90,] 12.190231
[91,] 12.209593
[92,] 12.228686
[93,] 12.247519
[94,] 12.266098
[95,] 12.284430
[96,] 12.302521
[97,] 12.320377
[98,] 12.338004
[99,] 12.355409
[100,] 12.372597
[101,] 12.389573
[102,] 12.406342
[103,] 12.422910
[104,] 12.439282
[105,] 12.455462
[106,] 12.471455
[107,] 12.487266
[108,] 12.502898
[109,] 12.518356
[110,] 12.533644
[111,] 12.548766
[112,] 12.563725
[113,] 12.578527
[114,] 12.593173
[115,] 12.607667
[116,] 12.622014
[117,] 12.636216
[118,] 12.650276
[119,] 12.664197
[120,] 12.677984
[121,] 12.691637
[122,] 12.705161
[123,] 12.718557
[124,] 12.731830
[125,] 12.744981
[126,] 12.758012
[127,] 12.770927
[128,] 12.783727
[129,] 12.796416
[130,] 12.808995
[131,] 12.821466
[132,] 12.833832
[133,] 12.846095
[134,] 12.858256
[135,] 12.870319
[136,] 12.882284
[137,] 12.894153
[138,] 12.905929
[139,] 12.917614
[140,] 12.929208
[141,] 12.940714
[142,] 12.952134
[143,] 12.963468
[144,] 12.974719
[145,] 12.985888
[146,] 12.996977
[147,] 13.007986
[148,] 13.018919
[149,] 13.029775
[150,] 13.040556
[151,] 13.051264
[152,] 13.061900
[153,] 13.072465
[154,] 13.082961
[155,] 13.093388
[156,] 13.103748
[157,] 13.114041
[158,] 13.124270
[159,] 13.134436
[160,] 13.144538
[161,] 13.154579
[162,] 13.164559
[163,] 13.174480
[164,] 13.184341
[165,] 13.194146
[166,] 13.203893
[167,] 13.213585
[168,] 13.223222
[169,] 13.232804
[170,] 13.242334
[171,] 13.251811
[172,] 13.261237
[173,] 13.270612
[174,] 13.279938
[175,] 13.289214
[176,] 13.298442
[177,] 13.307622
[178,] 13.316756
[179,] 13.325843
[180,] 13.334885
[181,] 13.343882
[182,] 13.352835
[183,] 13.361745
[184,] 13.370612
[185,] 13.379436
[186,] 13.388220
[187,] 13.396962
[188,] 13.405664
[189,] 13.414326
[190,] 13.422949
[191,] 13.431533
[192,] 13.440080
[193,] 13.448589
[194,] 13.457061
[195,] 13.465496
[196,] 13.473896
[197,] 13.482260
[198,] 13.490589
[199,] 13.498883
[200,] 13.507144
[201,] 13.515371
[202,] 13.523565
[203,] 13.531726
[204,] 13.539855
[205,] 13.547952
[206,] 13.556018
[207,] 13.564053
[208,] 13.572058
[209,] 13.580032
[210,] 13.587976
[211,] 13.595892
[212,] 13.603778
[213,] 13.611635
[214,] 13.619465
[215,] 13.627266
[216,] 13.635040
[217,] 13.642787
[218,] 13.650507
[219,] 13.658200
[220,] 13.665867
[221,] 13.673508
[222,] 13.681124
[223,] 13.688715
[224,] 13.696280
[225,] 13.703821
[226,] 13.711338
[227,] 13.718830
[228,] 13.726299
[229,] 13.733744
[230,] 13.741166
[231,] 13.748566
[232,] 13.755942
[233,] 13.763296
[234,] 13.770628
[235,] 13.777938
[236,] 13.785227
[237,] 13.792494
> ## wow! asymptotic is quite good even here!
>
> ## using MC (instead of polylog(.)) also ``works'' {the function is noisy ..}:
> l.th.MC <- sapply(th, attr(m1, "dacopula"), u = attr(m1, "u"),
+ n.MC = 2000, log=TRUE) ## 2000: be speedy in test
> lines(th, l.th.MC, lwd=3, col=adjustcolor("sandybrown", .5))
> legend("right", "n.MC = 2000", lwd=3, col=adjustcolor("sandybrown", .5),
+ inset=.01)
> rm(th)
>
> showProc.time()
Time elapsed: 0.53 0 0.53
>
> ## Extend the range:
> show.(m2 <- p.log.f(1, 200, n.th=401, d = 5, u0 = .987))
theta Stirling_Li_n(log(arg)) Eulerian_Li_n(log(arg))
[1,] 1.0000 4.071523 4.071523
[2,] 1.4975 5.033756 5.033756
[3,] 1.9950 5.798152 5.798152
[4,] 2.4925 6.430868 6.430868
[5,] 2.9900 6.966994 6.966994
[6,] 3.4875 7.428388 7.428388
[7,] 3.9850 7.830094 7.830094
[8,] 4.4825 8.183150 8.183150
[9,] 4.9800 8.495984 8.495984
[10,] 5.4775 8.775200 8.775200
[11,] 5.9750 9.026062 9.026062
[12,] 6.4725 9.252817 9.252817
[13,] 6.9700 9.458923 9.458923
[14,] 7.4675 9.647221 9.647221
[15,] 7.9650 9.820057 9.820057
[16,] 8.4625 9.979386 9.979386
[17,] 8.9600 10.126847 10.126847
[18,] 9.4575 10.263821 10.263821
[19,] 9.9550 10.391481 10.391481
[20,] 10.4525 10.510829 10.510829
[21,] 10.9500 10.622725 10.622725
[22,] 11.4475 10.727914 10.727914
[23,] 11.9450 10.827040 10.827040
[24,] 12.4425 10.920669 10.920669
[25,] 12.9400 11.009294 11.009294
[26,] 13.4375 11.093352 11.093352
[27,] 13.9350 11.173228 11.173228
[28,] 14.4325 11.249266 11.249266
[29,] 14.9300 11.321770 11.321770
[30,] 15.4275 11.391015 11.391015
[31,] 15.9250 11.457246 11.457246
[32,] 16.4225 11.520684 11.520684
[33,] 16.9200 11.581530 11.581530
[34,] 17.4175 11.639964 11.639964
[35,] 17.9150 11.696151 11.696151
[36,] 18.4125 11.750241 11.750241
[37,] 18.9100 11.802370 11.802370
[38,] 19.4075 11.852663 11.852663
[39,] 19.9050 11.901235 11.901235
[40,] 20.4025 11.948191 11.948191
[41,] 20.9000 11.993627 11.993627
[42,] 21.3975 12.037633 12.037633
[43,] 21.8950 12.080292 12.080292
[44,] 22.3925 12.121678 12.121678
[45,] 22.8900 12.161864 12.161864
[46,] 23.3875 12.200913 12.200913
[47,] 23.8850 12.238888 12.238888
[48,] 24.3825 12.275844 12.275844
[49,] 24.8800 12.311835 12.311835
[50,] 25.3775 12.346908 12.346908
[51,] 25.8750 12.381111 12.381111
[52,] 26.3725 12.414486 12.414486
[53,] 26.8700 12.447072 12.447072
[54,] 27.3675 12.478909 12.478909
[55,] 27.8650 12.510030 12.510030
[56,] 28.3625 12.540469 12.540469
[57,] 28.8600 12.570257 12.570257
[58,] 29.3575 12.599424 12.599424
[59,] 29.8550 12.627996 12.627996
[60,] 30.3525 12.656000 12.656000
[61,] 30.8500 12.683461 12.683461
[62,] 31.3475 12.710400 12.710400
[63,] 31.8450 12.736841 12.736841
[64,] 32.3425 12.762804 12.762804
[65,] 32.8400 12.788308 12.788308
[66,] 33.3375 12.813372 12.813372
[67,] 33.8350 12.838013 12.838013
[68,] 34.3325 12.862248 12.862248
[69,] 34.8300 12.886092 12.886092
[70,] 35.3275 12.909561 12.909561
[71,] 35.8250 12.932669 12.932669
[72,] 36.3225 12.955429 12.955429
[73,] 36.8200 12.977854 12.977854
[74,] 37.3175 12.999957 12.999957
[75,] 37.8150 13.021748 13.021748
[76,] 38.3125 13.043240 13.043240
[77,] 38.8100 13.064442 13.064442
[78,] 39.3075 13.085365 13.085365
[79,] 39.8050 13.106018 13.106018
[80,] 40.3025 13.126410 13.126410
[81,] 40.8000 13.146551 13.146551
[82,] 41.2975 13.166448 13.166448
[83,] 41.7950 13.186110 13.186110
[84,] 42.2925 13.205545 13.205545
[85,] 42.7900 13.224758 13.224758
[86,] 43.2875 13.243759 13.243759
[87,] 43.7850 13.262553 13.262553
[88,] 44.2825 13.281146 13.281146
[89,] 44.7800 13.299546 13.299546
[90,] 45.2775 13.317758 13.317758
[91,] 45.7750 13.335787 13.335787
[92,] 46.2725 13.353639 13.353639
[93,] 46.7700 13.371319 13.371319
[94,] 47.2675 13.388833 13.388833
[95,] 47.7650 13.406185 13.406185
[96,] 48.2625 13.423379 13.423379
[97,] 48.7600 13.440421 13.440421
[98,] 49.2575 13.457314 13.457314
[99,] 49.7550 13.474063 13.474063
[100,] 50.2525 13.490672 13.490672
[101,] 50.7500 13.507144 13.507144
[102,] 51.2475 13.523483 13.523483
[103,] 51.7450 13.539693 13.539693
[104,] 52.2425 13.555777 13.555777
[105,] 52.7400 13.571738 13.571738
[106,] 53.2375 13.587580 13.587580
[107,] 53.7350 13.603305 13.603305
[108,] 54.2325 13.618918 13.618918
[109,] 54.7300 13.634419 13.634419
[110,] 55.2275 13.649813 13.649813
[111,] 55.7250 13.665102 13.665102
[112,] 56.2225 13.680288 13.680288
[113,] 56.7200 13.695374 13.695374
[114,] 57.2175 13.710362 13.710362
[115,] 57.7150 13.725255 13.725255
[116,] 58.2125 13.740054 13.740054
[117,] 58.7100 13.754763 13.754763
[118,] 59.2075 13.769383 13.769383
[119,] 59.7050 13.783916 13.783916
[120,] 60.2025 13.798364 13.798364
[121,] 60.7000 13.812729 13.812729
[122,] 61.1975 13.827013 13.827013
[123,] 61.6950 13.841218 13.841218
[124,] 62.1925 13.855345 13.855345
[125,] 62.6900 13.869396 13.869396
[126,] 63.1875 13.883373 13.883373
[127,] 63.6850 13.897276 13.897276
[128,] 64.1825 13.911109 13.911109
[129,] 64.6800 13.924871 13.924871
[130,] 65.1775 13.938566 13.938566
[131,] 65.6750 13.952193 13.952193
[132,] 66.1725 13.965754 13.965754
[133,] 66.6700 13.979252 13.979252
[134,] 67.1675 13.992686 13.992686
[135,] 67.6650 14.006058 14.006058
[136,] 68.1625 14.019370 14.019370
[137,] 68.6600 14.032622 14.032622
[138,] 69.1575 14.045815 14.045815
[139,] 69.6550 14.058952 14.058952
[140,] 70.1525 14.072032 14.072032
[141,] 70.6500 14.085057 14.085057
[142,] 71.1475 14.098027 14.098027
[143,] 71.6450 14.110945 14.110945
[144,] 72.1425 14.123810 14.123810
[145,] 72.6400 14.136623 14.136623
[146,] 73.1375 14.149387 14.149387
[147,] 73.6350 14.162100 14.162100
[148,] 74.1325 14.174765 14.174765
[149,] 74.6300 14.187382 14.187382
[150,] 75.1275 14.199952 14.199952
[151,] 75.6250 14.212475 14.212475
[152,] 76.1225 14.224953 14.224953
[153,] 76.6200 14.237386 14.237386
[154,] 77.1175 14.249775 14.249775
[155,] 77.6150 14.262120 14.262120
[156,] 78.1125 14.274423 14.274423
[157,] 78.6100 14.286683 14.286683
[158,] 79.1075 14.298902 14.298902
[159,] 79.6050 14.311080 14.311080
[160,] 80.1025 14.323218 14.323218
[161,] 80.6000 14.335317 14.335317
[162,] 81.0975 14.347376 14.347376
[163,] 81.5950 14.359397 14.359397
[164,] 82.0925 14.371380 14.371380
[165,] 82.5900 14.383325 14.383325
[166,] 83.0875 14.395234 14.395234
[167,] 83.5850 14.407107 14.407107
[168,] 84.0825 14.418943 14.418943
[169,] 84.5800 14.430745 14.430745
[170,] 85.0775 14.442511 14.442511
[171,] 85.5750 14.454243 14.454243
[172,] 86.0725 14.465941 14.465941
[173,] 86.5700 14.477606 14.477606
[174,] 87.0675 14.489237 14.489237
[175,] 87.5650 14.500836 14.500836
[176,] 88.0625 14.512403 14.512403
[177,] 88.5600 14.523938 14.523938
[178,] 89.0575 14.535442 14.535442
[179,] 89.5550 14.546914 14.546914
[180,] 90.0525 14.558356 14.558356
[181,] 90.5500 14.569767 14.569767
[182,] 91.0475 14.581149 14.581149
[183,] 91.5450 14.592501 14.592501
[184,] 92.0425 14.603824 14.603824
[185,] 92.5400 14.615118 14.615118
[186,] 93.0375 14.626383 14.626383
[187,] 93.5350 14.637620 14.637620
[188,] 94.0325 14.648829 14.648829
[189,] 94.5300 14.660011 14.660011
[190,] 95.0275 14.671165 14.671165
[191,] 95.5250 14.682292 14.682292
[192,] 96.0225 14.693393 14.693393
[193,] 96.5200 14.704466 14.704466
[194,] 97.0175 14.715514 14.715514
[195,] 97.5150 14.726536 14.726536
[196,] 98.0125 14.737532 14.737532
[197,] 98.5100 14.748503 14.748503
[198,] 99.0075 14.759448 14.759448
[199,] 99.5050 14.770369 14.770369
[200,] 100.0025 14.781265 14.781265
[201,] 100.5000 14.792137 14.792137
[202,] 100.9975 14.802984 14.802984
[203,] 101.4950 14.813807 14.813807
[204,] 101.9925 14.824607 14.824607
[205,] 102.4900 14.835383 14.835383
[206,] 102.9875 14.846136 14.846136
[207,] 103.4850 14.856865 14.856865
[208,] 103.9825 14.867572 14.867572
[209,] 104.4800 14.878256 14.878256
[210,] 104.9775 14.888918 14.888918
[211,] 105.4750 14.899557 14.899557
[212,] 105.9725 14.910174 14.910174
[213,] 106.4700 14.920769 14.920769
[214,] 106.9675 14.931343 14.931343
[215,] 107.4650 14.941894 14.941894
[216,] 107.9625 14.952425 14.952425
[217,] 108.4600 14.962934 14.962934
[218,] 108.9575 14.973422 14.973422
[219,] 109.4550 14.983889 14.983889
[220,] 109.9525 14.994336 14.994336
[221,] 110.4500 15.004761 15.004761
[222,] 110.9475 15.015167 15.015167
[223,] 111.4450 15.025552 15.025552
[224,] 111.9425 15.035917 15.035917
[225,] 112.4400 15.046262 15.046262
[226,] 112.9375 15.056587 15.056587
[227,] 113.4350 15.066892 15.066892
[228,] 113.9325 15.077178 15.077178
[229,] 114.4300 15.087445 15.087445
[230,] 114.9275 15.097692 15.097692
[231,] 115.4250 15.107920 15.107920
[232,] 115.9225 15.118129 15.118129
[233,] 116.4200 15.128319 15.128319
[234,] 116.9175 15.138490 15.138490
[235,] 117.4150 15.148643 15.148643
[236,] 117.9125 15.158777 15.158777
[237,] 118.4100 15.168892 15.168892
[238,] 118.9075 15.178990 15.178990
[239,] 119.4050 15.189069 15.189069
[240,] 119.9025 15.199130 15.199130
[241,] 120.4000 15.209173 15.209173
[242,] 120.8975 15.219198 15.219198
[243,] 121.3950 15.229206 15.229206
[244,] 121.8925 15.239196 15.239196
[245,] 122.3900 15.249168 15.249168
[246,] 122.8875 15.259123 15.259123
[247,] 123.3850 15.269060 15.269060
[248,] 123.8825 15.278981 15.278981
[249,] 124.3800 15.288884 15.288884
[250,] 124.8775 15.298770 15.298770
[251,] 125.3750 15.308639 15.308639
[252,] 125.8725 15.318491 15.318491
[253,] 126.3700 15.328326 15.328326
[254,] 126.8675 15.338145 15.338145
[255,] 127.3650 15.347947 15.347947
[256,] 127.8625 15.357733 15.357733
[257,] 128.3600 15.367502 15.367502
[258,] 128.8575 15.377255 15.377255
[259,] 129.3550 15.386991 15.386991
[260,] 129.8525 15.396712 15.396712
[261,] 130.3500 15.406416 15.406416
[262,] 130.8475 15.416104 15.416104
[263,] 131.3450 15.425776 15.425776
[264,] 131.8425 15.435433 15.435433
[265,] 132.3400 15.445073 15.445073
[266,] 132.8375 15.454698 15.454698
[267,] 133.3350 15.464307 15.464307
[268,] 133.8325 15.473901 15.473901
[269,] 134.3300 15.483479 15.483479
[270,] 134.8275 15.493041 15.493041
[271,] 135.3250 15.502589 15.502589
[272,] 135.8225 15.512121 15.512121
[273,] 136.3200 15.521637 15.521637
[274,] 136.8175 15.531139 15.531139
[275,] 137.3150 15.540625 15.540625
[276,] 137.8125 15.550096 15.550096
[277,] 138.3100 15.559553 15.559553
[278,] 138.8075 15.568994 15.568994
[279,] 139.3050 15.578420 15.578420
[280,] 139.8025 15.587832 15.587832
[281,] 140.3000 15.597229 15.597229
[282,] 140.7975 15.606611 15.606611
[283,] 141.2950 15.615979 15.615979
[284,] 141.7925 15.625332 15.625332
[285,] 142.2900 15.634670 15.634670
[286,] 142.7875 15.643994 15.643994
[287,] 143.2850 15.653304 15.653304
[288,] 143.7825 15.662599 15.662599
[289,] 144.2800 15.671880 15.671880
[290,] 144.7775 15.681147 15.681147
[291,] 145.2750 15.690400 15.690400
[292,] 145.7725 15.699638 15.699638
[293,] 146.2700 15.708862 15.708862
[294,] 146.7675 15.718073 15.718073
[295,] 147.2650 15.727269 15.727269
[296,] 147.7625 15.736451 15.736451
[297,] 148.2600 15.745619 15.745619
[298,] 148.7575 15.754774 15.754774
[299,] 149.2550 15.763915 15.763915
[300,] 149.7525 15.773042 15.773042
[301,] 150.2500 15.782155 15.782155
[302,] 150.7475 15.791255 15.791255
[303,] 151.2450 15.800341 15.800341
[304,] 151.7425 15.809413 15.809413
[305,] 152.2400 15.818472 15.818472
[306,] 152.7375 15.827517 15.827517
[307,] 153.2350 15.836549 15.836549
[308,] 153.7325 15.845568 15.845568
[309,] 154.2300 15.854573 15.854573
[310,] 154.7275 15.863565 15.863565
[311,] 155.2250 15.872543 15.872543
[312,] 155.7225 15.881509 15.881509
[313,] 156.2200 15.890461 15.890461
[314,] 156.7175 15.899400 15.899400
[315,] 157.2150 15.908326 15.908326
[316,] 157.7125 15.917238 15.917238
[317,] 158.2100 15.926138 15.926138
[318,] 158.7075 15.935025 15.935025
[319,] 159.2050 15.943899 15.943899
[320,] 159.7025 15.952759 15.952759
[321,] 160.2000 15.961607 15.961607
[322,] 160.6975 15.970442 15.970442
[323,] 161.1950 15.979265 15.979265
[324,] 161.6925 15.988074 15.988074
[325,] 162.1900 15.996871 15.996871
[326,] 162.6875 16.005655 16.005655
[327,] 163.1850 16.014426 16.014426
[328,] 163.6825 16.023185 16.023185
[329,] 164.1800 16.031931 16.031931
[330,] 164.6775 16.040665 16.040665
[331,] 165.1750 16.049386 16.049386
[332,] 165.6725 16.058094 16.058094
[333,] 166.1700 16.066790 16.066790
[334,] 166.6675 16.075474 16.075474
[335,] 167.1650 16.084145 16.084145
[336,] 167.6625 16.092803 16.092803
[337,] 168.1600 16.101450 16.101450
[338,] 168.6575 16.110084 16.110084
[339,] 169.1550 16.118706 16.118706
[340,] 169.6525 16.127315 16.127315
[341,] 170.1500 16.135913 16.135913
[342,] 170.6475 16.144498 16.144498
[343,] 171.1450 16.153071 16.153071
[344,] 171.6425 16.161632 16.161632
[345,] 172.1400 16.170180 16.170180
[346,] 172.6375 16.178717 16.178717
[347,] 173.1350 16.187242 16.187242
[348,] 173.6325 16.195754 16.195754
[349,] 174.1300 16.204255 16.204255
[350,] 174.6275 16.212743 16.212743
[351,] 175.1250 16.221220 16.221220
[352,] 175.6225 16.229685 16.229685
[353,] 176.1200 16.238138 16.238138
[354,] 176.6175 16.246579 16.246579
[355,] 177.1150 16.255008 16.255008
[356,] 177.6125 16.263426 16.263426
[357,] 178.1100 16.271832 16.271832
[358,] 178.6075 16.280226 16.280226
[359,] 179.1050 16.288608 16.288608
[360,] 179.6025 16.296979 16.296979
[361,] 180.1000 16.305338 16.305338
[362,] 180.5975 Inf 16.313685
[363,] 181.0950 Inf 16.322021
[364,] 181.5925 Inf 16.330345
[365,] 182.0900 Inf 16.338657
[366,] 182.5875 Inf 16.346959
[367,] 183.0850 Inf 16.355248
[368,] 183.5825 Inf 16.363526
[369,] 184.0800 Inf 16.371793
[370,] 184.5775 Inf 16.380048
[371,] 185.0750 Inf 16.388292
[372,] 185.5725 Inf 16.396524
[373,] 186.0700 Inf 16.404745
[374,] 186.5675 Inf 16.412955
[375,] 187.0650 Inf 16.421154
[376,] 187.5625 Inf 16.429341
[377,] 188.0600 Inf 16.437517
[378,] 188.5575 Inf 16.445681
[379,] 189.0550 Inf 16.453835
[380,] 189.5525 Inf 16.461977
[381,] 190.0500 Inf 16.470108
[382,] 190.5475 Inf 16.478228
[383,] 191.0450 Inf 16.486337
[384,] 191.5425 Inf 16.494435
[385,] 192.0400 Inf 16.502521
[386,] 192.5375 Inf 16.510597
[387,] 193.0350 Inf 16.518662
[388,] 193.5325 Inf 16.526715
[389,] 194.0300 Inf 16.534758
[390,] 194.5275 Inf 16.542790
[391,] 195.0250 Inf 16.550810
[392,] 195.5225 Inf 16.558820
[393,] 196.0200 Inf 16.566819
[394,] 196.5175 Inf 16.574807
[395,] 197.0150 Inf 16.582784
[396,] 197.5125 Inf 16.590751
[397,] 198.0100 Inf 16.598706
[398,] 198.5075 Inf 16.606651
[399,] 199.0050 Inf 16.614585
[400,] 199.5025 Inf 16.622508
[401,] 200.0000 Inf 16.630421
asymp-w_Li_n(log(arg))
[1,] 4.071520
[2,] 5.033756
[3,] 5.798152
[4,] 6.430868
[5,] 6.966994
[6,] 7.428388
[7,] 7.830094
[8,] 8.183150
[9,] 8.495984
[10,] 8.775200
[11,] 9.026062
[12,] 9.252817
[13,] 9.458923
[14,] 9.647221
[15,] 9.820057
[16,] 9.979386
[17,] 10.126847
[18,] 10.263821
[19,] 10.391481
[20,] 10.510829
[21,] 10.622725
[22,] 10.727914
[23,] 10.827040
[24,] 10.920669
[25,] 11.009294
[26,] 11.093352
[27,] 11.173228
[28,] 11.249266
[29,] 11.321770
[30,] 11.391015
[31,] 11.457246
[32,] 11.520684
[33,] 11.581530
[34,] 11.639964
[35,] 11.696151
[36,] 11.750241
[37,] 11.802370
[38,] 11.852663
[39,] 11.901235
[40,] 11.948191
[41,] 11.993627
[42,] 12.037633
[43,] 12.080292
[44,] 12.121678
[45,] 12.161864
[46,] 12.200913
[47,] 12.238888
[48,] 12.275844
[49,] 12.311835
[50,] 12.346908
[51,] 12.381111
[52,] 12.414486
[53,] 12.447072
[54,] 12.478909
[55,] 12.510030
[56,] 12.540469
[57,] 12.570257
[58,] 12.599424
[59,] 12.627996
[60,] 12.656000
[61,] 12.683461
[62,] 12.710400
[63,] 12.736841
[64,] 12.762804
[65,] 12.788308
[66,] 12.813372
[67,] 12.838013
[68,] 12.862248
[69,] 12.886092
[70,] 12.909561
[71,] 12.932669
[72,] 12.955429
[73,] 12.977854
[74,] 12.999957
[75,] 13.021748
[76,] 13.043240
[77,] 13.064442
[78,] 13.085365
[79,] 13.106018
[80,] 13.126410
[81,] 13.146551
[82,] 13.166448
[83,] 13.186110
[84,] 13.205545
[85,] 13.224758
[86,] 13.243759
[87,] 13.262553
[88,] 13.281146
[89,] 13.299546
[90,] 13.317758
[91,] 13.335787
[92,] 13.353639
[93,] 13.371319
[94,] 13.388833
[95,] 13.406185
[96,] 13.423379
[97,] 13.440421
[98,] 13.457314
[99,] 13.474063
[100,] 13.490672
[101,] 13.507144
[102,] 13.523483
[103,] 13.539693
[104,] 13.555777
[105,] 13.571738
[106,] 13.587580
[107,] 13.603305
[108,] 13.618918
[109,] 13.634419
[110,] 13.649813
[111,] 13.665102
[112,] 13.680288
[113,] 13.695374
[114,] 13.710362
[115,] 13.725255
[116,] 13.740054
[117,] 13.754763
[118,] 13.769383
[119,] 13.783916
[120,] 13.798364
[121,] 13.812729
[122,] 13.827013
[123,] 13.841218
[124,] 13.855345
[125,] 13.869396
[126,] 13.883373
[127,] 13.897276
[128,] 13.911109
[129,] 13.924871
[130,] 13.938566
[131,] 13.952193
[132,] 13.965754
[133,] 13.979252
[134,] 13.992686
[135,] 14.006058
[136,] 14.019370
[137,] 14.032622
[138,] 14.045815
[139,] 14.058952
[140,] 14.072032
[141,] 14.085057
[142,] 14.098027
[143,] 14.110945
[144,] 14.123810
[145,] 14.136623
[146,] 14.149387
[147,] 14.162100
[148,] 14.174765
[149,] 14.187382
[150,] 14.199952
[151,] 14.212475
[152,] 14.224953
[153,] 14.237386
[154,] 14.249775
[155,] 14.262120
[156,] 14.274423
[157,] 14.286683
[158,] 14.298902
[159,] 14.311080
[160,] 14.323218
[161,] 14.335317
[162,] 14.347376
[163,] 14.359397
[164,] 14.371380
[165,] 14.383325
[166,] 14.395234
[167,] 14.407107
[168,] 14.418943
[169,] 14.430745
[170,] 14.442511
[171,] 14.454243
[172,] 14.465941
[173,] 14.477606
[174,] 14.489237
[175,] 14.500836
[176,] 14.512403
[177,] 14.523938
[178,] 14.535442
[179,] 14.546914
[180,] 14.558356
[181,] 14.569767
[182,] 14.581149
[183,] 14.592501
[184,] 14.603824
[185,] 14.615118
[186,] 14.626383
[187,] 14.637620
[188,] 14.648829
[189,] 14.660011
[190,] 14.671165
[191,] 14.682292
[192,] 14.693393
[193,] 14.704466
[194,] 14.715514
[195,] 14.726536
[196,] 14.737532
[197,] 14.748503
[198,] 14.759448
[199,] 14.770369
[200,] 14.781265
[201,] 14.792137
[202,] 14.802984
[203,] 14.813807
[204,] 14.824607
[205,] 14.835383
[206,] 14.846136
[207,] 14.856865
[208,] 14.867572
[209,] 14.878256
[210,] 14.888918
[211,] 14.899557
[212,] 14.910174
[213,] 14.920769
[214,] 14.931343
[215,] 14.941894
[216,] 14.952425
[217,] 14.962934
[218,] 14.973422
[219,] 14.983889
[220,] 14.994336
[221,] 15.004761
[222,] 15.015167
[223,] 15.025552
[224,] 15.035917
[225,] 15.046262
[226,] 15.056587
[227,] 15.066892
[228,] 15.077178
[229,] 15.087445
[230,] 15.097692
[231,] 15.107920
[232,] 15.118129
[233,] 15.128319
[234,] 15.138490
[235,] 15.148643
[236,] 15.158777
[237,] 15.168892
[238,] 15.178990
[239,] 15.189069
[240,] 15.199130
[241,] 15.209173
[242,] 15.219198
[243,] 15.229206
[244,] 15.239196
[245,] 15.249168
[246,] 15.259123
[247,] 15.269060
[248,] 15.278981
[249,] 15.288884
[250,] 15.298770
[251,] 15.308639
[252,] 15.318491
[253,] 15.328326
[254,] 15.338145
[255,] 15.347947
[256,] 15.357733
[257,] 15.367502
[258,] 15.377255
[259,] 15.386991
[260,] 15.396712
[261,] 15.406416
[262,] 15.416104
[263,] 15.425776
[264,] 15.435433
[265,] 15.445073
[266,] 15.454698
[267,] 15.464307
[268,] 15.473901
[269,] 15.483479
[270,] 15.493041
[271,] 15.502589
[272,] 15.512121
[273,] 15.521637
[274,] 15.531139
[275,] 15.540625
[276,] 15.550096
[277,] 15.559553
[278,] 15.568994
[279,] 15.578420
[280,] 15.587832
[281,] 15.597229
[282,] 15.606611
[283,] 15.615979
[284,] 15.625332
[285,] 15.634670
[286,] 15.643994
[287,] 15.653304
[288,] 15.662599
[289,] 15.671880
[290,] 15.681147
[291,] 15.690400
[292,] 15.699638
[293,] 15.708862
[294,] 15.718073
[295,] 15.727269
[296,] 15.736451
[297,] 15.745619
[298,] 15.754774
[299,] 15.763915
[300,] 15.773042
[301,] 15.782155
[302,] 15.791255
[303,] 15.800341
[304,] 15.809413
[305,] 15.818472
[306,] 15.827517
[307,] 15.836549
[308,] 15.845568
[309,] 15.854573
[310,] 15.863565
[311,] 15.872543
[312,] 15.881509
[313,] 15.890461
[314,] 15.899400
[315,] 15.908326
[316,] 15.917238
[317,] 15.926138
[318,] 15.935025
[319,] 15.943899
[320,] 15.952759
[321,] 15.961607
[322,] 15.970442
[323,] 15.979265
[324,] 15.988074
[325,] 15.996871
[326,] 16.005655
[327,] 16.014426
[328,] 16.023185
[329,] 16.031931
[330,] 16.040665
[331,] 16.049386
[332,] 16.058094
[333,] 16.066790
[334,] 16.075474
[335,] 16.084145
[336,] 16.092803
[337,] 16.101450
[338,] 16.110084
[339,] 16.118706
[340,] 16.127315
[341,] 16.135913
[342,] 16.144498
[343,] 16.153071
[344,] 16.161632
[345,] 16.170180
[346,] 16.178717
[347,] 16.187242
[348,] 16.195754
[349,] 16.204255
[350,] 16.212743
[351,] 16.221220
[352,] 16.229685
[353,] 16.238138
[354,] 16.246579
[355,] 16.255008
[356,] 16.263426
[357,] 16.271832
[358,] 16.280226
[359,] 16.288608
[360,] 16.296979
[361,] 16.305338
[362,] 16.313685
[363,] 16.322021
[364,] 16.330345
[365,] 16.338657
[366,] 16.346959
[367,] 16.355248
[368,] 16.363526
[369,] 16.371793
[370,] 16.380048
[371,] 16.388292
[372,] 16.396524
[373,] 16.404745
[374,] 16.412955
[375,] 16.421154
[376,] 16.429341
[377,] 16.437517
[378,] 16.445681
[379,] 16.453835
[380,] 16.461977
[381,] 16.470108
[382,] 16.478228
[383,] 16.486337
[384,] 16.494435
[385,] 16.502521
[386,] 16.510597
[387,] 16.518662
[388,] 16.526715
[389,] 16.534758
[390,] 16.542790
[391,] 16.550810
[392,] 16.558820
[393,] 16.566819
[394,] 16.574807
[395,] 16.582784
[396,] 16.590751
[397,] 16.598706
[398,] 16.606651
[399,] 16.614585
[400,] 16.622508
[401,] 16.630421
>
> if(doExtras) {
+ ## Extend the range even more -- change u0
+ show.(m3 <- p.log.f(10, 500, d = 5, u0 = .96))
+ ## and more
+ show.(m3.2 <- p.log.f(10, 800, d = 5, u0 = .96))#-> breakdown at ~ 775..
+ }
> showProc.time()
Time elapsed: 0.31 0 0.31
>
>
> ## higher d:
> if(doExtras) {
+ show.(m4 <- p.log.f(10, 500, d = 12, u0 = 0.95))
+ m5 <- p.log.f(10, 500, d = 12, u0 = 0.92)
+ m6 <- p.log.f(1, 200, d = 12, u0 = c(0.8, 0.9), legend.x="topright")
+ m7 <- p.log.f(1, 400, d = 12, u0 = c(0.88, 0.9))
+ }
>
> ## whereas this now also overflows for Eulerian *AND* asymp. + log.arg:
> show.(mm <- p.log.f(10, 1000, d = 12, u0 = 0.9))
theta Stirling_Li_n(log(arg)) Eulerian_Li_n(log(arg))
[1,] 10.00000 17.94816 17.94816
[2,] 13.88235 19.73673 19.73673
[3,] 17.76471 21.35567 21.35567
[4,] 21.64706 22.84110 22.84110
[5,] 25.52941 24.21004 24.21004
[6,] 29.41176 25.47414 25.47414
[7,] 33.29412 26.64318 26.64318
[8,] 37.17647 27.72609 27.72609
[9,] 41.05882 28.73110 28.73110
[10,] 44.94118 29.66588 29.66588
[11,] 48.82353 30.53743 30.53743
[12,] 52.70588 31.35211 31.35211
[13,] 56.58824 32.11565 32.11565
[14,] 60.47059 32.83320 32.83320
[15,] 64.35294 33.50929 33.50929
[16,] 68.23529 34.14798 34.14798
[17,] 72.11765 34.75283 34.75283
[18,] 76.00000 Inf 35.32700
[19,] 79.88235 Inf 35.87327
[20,] 83.76471 Inf 36.39409
[21,] 87.64706 Inf 36.89164
[22,] 91.52941 Inf 37.36786
[23,] 95.41176 Inf 37.82444
[24,] 99.29412 Inf 38.26291
[25,] 103.17647 Inf 38.68464
[26,] 107.05882 Inf 39.09084
[27,] 110.94118 Inf 39.48260
[28,] 114.82353 Inf 39.86090
[29,] 118.70588 Inf 40.22664
[30,] 122.58824 Inf 40.58062
[31,] 126.47059 Inf 40.92357
[32,] 130.35294 Inf 41.25615
[33,] 134.23529 Inf 41.57898
[34,] 138.11765 Inf 41.89260
[35,] 142.00000 Inf 42.19753
[36,] 145.88235 Inf 42.49424
[37,] 149.76471 Inf 42.78315
[38,] 153.64706 Inf 43.06467
[39,] 157.52941 Inf 43.33916
[40,] 161.41176 Inf 43.60697
[41,] 165.29412 Inf 43.86842
[42,] 169.17647 Inf 44.12379
[43,] 173.05882 Inf 44.37338
[44,] 176.94118 Inf 44.61742
[45,] 180.82353 Inf 44.85617
[46,] 184.70588 Inf 45.08984
[47,] 188.58824 Inf 45.31865
[48,] 192.47059 Inf 45.54280
[49,] 196.35294 Inf 45.76248
[50,] 200.23529 Inf 45.97785
[51,] 204.11765 Inf 46.18909
[52,] 208.00000 Inf 46.39635
[53,] 211.88235 Inf 46.59977
[54,] 215.76471 Inf 46.79950
[55,] 219.64706 Inf 46.99567
[56,] 223.52941 Inf 47.18840
[57,] 227.41176 Inf 47.37781
[58,] 231.29412 Inf 47.56402
[59,] 235.17647 Inf 47.74713
[60,] 239.05882 Inf 47.92723
[61,] 242.94118 Inf 48.10444
[62,] 246.82353 Inf 48.27884
[63,] 250.70588 Inf 48.45051
[64,] 254.58824 Inf 48.61955
[65,] 258.47059 Inf 48.78603
[66,] 262.35294 Inf 48.95003
[67,] 266.23529 Inf 49.11161
[68,] 270.11765 Inf 49.27086
[69,] 274.00000 Inf 49.42784
[70,] 277.88235 Inf 49.58260
[71,] 281.76471 Inf 49.73522
[72,] 285.64706 Inf 49.88575
[73,] 289.52941 Inf 50.03425
[74,] 293.41176 Inf 50.18077
[75,] 297.29412 Inf 50.32537
[76,] 301.17647 Inf 50.46809
[77,] 305.05882 Inf 50.60898
[78,] 308.94118 Inf 50.74809
[79,] 312.82353 Inf 50.88546
[80,] 316.70588 Inf 51.02114
[81,] 320.58824 Inf 51.15516
[82,] 324.47059 Inf 51.28757
[83,] 328.35294 Inf 51.41841
[84,] 332.23529 Inf 51.54771
[85,] 336.11765 Inf 51.67550
[86,] 340.00000 Inf 51.80183
[87,] 343.88235 Inf 51.92672
[88,] 347.76471 Inf 52.05022
[89,] 351.64706 Inf 52.17234
[90,] 355.52941 Inf 52.29312
[91,] 359.41176 Inf 52.41258
[92,] 363.29412 Inf 52.53077
[93,] 367.17647 Inf 52.64770
[94,] 371.05882 Inf 52.76339
[95,] 374.94118 Inf 52.87789
[96,] 378.82353 Inf 52.99120
[97,] 382.70588 Inf 53.10336
[98,] 386.58824 Inf 53.21439
[99,] 390.47059 Inf 53.32431
[100,] 394.35294 Inf 53.43314
[101,] 398.23529 Inf 53.54090
[102,] 402.11765 Inf 53.64762
[103,] 406.00000 Inf 53.75331
[104,] 409.88235 Inf 53.85800
[105,] 413.76471 Inf 53.96170
[106,] 417.64706 Inf 54.06443
[107,] 421.52941 Inf 54.16621
[108,] 425.41176 Inf 54.26706
[109,] 429.29412 Inf 54.36699
[110,] 433.17647 Inf 54.46603
[111,] 437.05882 Inf 54.56417
[112,] 440.94118 Inf 54.66145
[113,] 444.82353 Inf 54.75788
[114,] 448.70588 Inf 54.85347
[115,] 452.58824 Inf 54.94824
[116,] 456.47059 Inf 55.04220
[117,] 460.35294 Inf 55.13536
[118,] 464.23529 Inf 55.22773
[119,] 468.11765 Inf 55.31934
[120,] 472.00000 Inf 55.41020
[121,] 475.88235 Inf 55.50031
[122,] 479.76471 Inf 55.58968
[123,] 483.64706 Inf 55.67834
[124,] 487.52941 Inf 55.76628
[125,] 491.41176 Inf 55.85353
[126,] 495.29412 Inf 55.94010
[127,] 499.17647 Inf 56.02598
[128,] 503.05882 Inf 56.11121
[129,] 506.94118 Inf 56.19577
[130,] 510.82353 Inf 56.27969
[131,] 514.70588 Inf 56.36298
[132,] 518.58824 Inf 56.44564
[133,] 522.47059 Inf 56.52768
[134,] 526.35294 Inf 56.60912
[135,] 530.23529 Inf 56.68996
[136,] 534.11765 Inf 56.77021
[137,] 538.00000 Inf 56.84987
[138,] 541.88235 Inf 56.92897
[139,] 545.76471 Inf 57.00750
[140,] 549.64706 Inf 57.08547
[141,] 553.52941 Inf 57.16289
[142,] 557.41176 Inf 57.23977
[143,] 561.29412 Inf 57.31612
[144,] 565.17647 Inf 57.39195
[145,] 569.05882 Inf 57.46725
[146,] 572.94118 Inf 57.54204
[147,] 576.82353 Inf 57.61633
[148,] 580.70588 Inf 57.69012
[149,] 584.58824 Inf 57.76341
[150,] 588.47059 Inf 57.83622
[151,] 592.35294 Inf 57.90856
[152,] 596.23529 Inf 57.98042
[153,] 600.11765 Inf 58.05181
[154,] 604.00000 Inf 58.12274
[155,] 607.88235 Inf 58.19322
[156,] 611.76471 Inf 58.26325
[157,] 615.64706 Inf 58.33284
[158,] 619.52941 Inf 58.40199
[159,] 623.41176 Inf 58.47071
[160,] 627.29412 Inf 58.53900
[161,] 631.17647 Inf 58.60687
[162,] 635.05882 Inf 58.67432
[163,] 638.94118 Inf 58.74136
[164,] 642.82353 Inf 58.80800
[165,] 646.70588 Inf 58.87424
[166,] 650.58824 Inf 58.94007
[167,] 654.47059 Inf 59.00552
[168,] 658.35294 Inf 59.07058
[169,] 662.23529 Inf 59.13526
[170,] 666.11765 Inf 59.19956
[171,] 670.00000 Inf 59.26348
[172,] 673.88235 Inf 59.32704
[173,] 677.76471 Inf 59.39023
[174,] 681.64706 Inf 59.45306
[175,] 685.52941 Inf 59.51553
[176,] 689.41176 Inf 59.57765
[177,] 693.29412 Inf 59.63943
[178,] 697.17647 Inf 59.70085
[179,] 701.05882 Inf 59.76194
[180,] 704.94118 Inf 59.82269
[181,] 708.82353 Inf 59.88310
[182,] 712.70588 Inf 59.94319
[183,] 716.58824 Inf 60.00294
[184,] 720.47059 Inf 60.06238
[185,] 724.35294 Inf 60.12149
[186,] 728.23529 Inf 60.18029
[187,] 732.11765 Inf 60.23878
[188,] 736.00000 Inf 60.29696
[189,] 739.88235 Inf 60.35483
[190,] 743.76471 Inf 60.41240
[191,] 747.64706 Inf 60.46967
[192,] 751.52941 Inf 60.52664
[193,] 755.41176 Inf 60.58332
[194,] 759.29412 Inf 60.63971
[195,] 763.17647 Inf 60.69581
[196,] 767.05882 Inf 60.75163
[197,] 770.94118 Inf 60.80716
[198,] 774.82353 Inf 60.86242
[199,] 778.70588 Inf 60.91740
[200,] 782.58824 Inf 60.97210
[201,] 786.47059 Inf 61.02654
[202,] 790.35294 Inf 61.08070
[203,] 794.23529 Inf 61.13461
[204,] 798.11765 Inf 61.18824
[205,] 802.00000 Inf 61.24162
[206,] 805.88235 Inf 61.29474
[207,] 809.76471 Inf 61.34761
[208,] 813.64706 Inf 61.40024
[209,] 817.52941 Inf 61.45329
[210,] 821.41176 Inf 61.49269
[211,] 825.29412 Inf 62.34770
[212,] 829.17647 NaN Inf
[213,] 833.05882 NaN Inf
[214,] 836.94118 NaN Inf
[215,] 840.82353 NaN Inf
[216,] 844.70588 NaN Inf
[217,] 848.58824 NaN Inf
[218,] 852.47059 NaN Inf
[219,] 856.35294 NaN Inf
[220,] 860.23529 NaN Inf
[221,] 864.11765 NaN Inf
[222,] 868.00000 NaN Inf
[223,] 871.88235 NaN Inf
[224,] 875.76471 NaN Inf
[225,] 879.64706 NaN Inf
[226,] 883.52941 NaN Inf
[227,] 887.41176 NaN Inf
[228,] 891.29412 NaN Inf
[229,] 895.17647 NaN Inf
[230,] 899.05882 NaN Inf
[231,] 902.94118 NaN Inf
[232,] 906.82353 NaN Inf
[233,] 910.70588 NaN Inf
[234,] 914.58824 NaN Inf
[235,] 918.47059 NaN Inf
[236,] 922.35294 NaN Inf
[237,] 926.23529 NaN Inf
[238,] 930.11765 NaN Inf
[239,] 934.00000 NaN Inf
[240,] 937.88235 NaN Inf
[241,] 941.76471 NaN Inf
[242,] 945.64706 NaN Inf
[243,] 949.52941 NaN Inf
[244,] 953.41176 NaN Inf
[245,] 957.29412 NaN Inf
[246,] 961.17647 NaN Inf
[247,] 965.05882 NaN Inf
[248,] 968.94118 NaN Inf
[249,] 972.82353 NaN Inf
[250,] 976.70588 NaN Inf
[251,] 980.58824 NaN Inf
[252,] 984.47059 NaN Inf
[253,] 988.35294 NaN Inf
[254,] 992.23529 NaN Inf
[255,] 996.11765 NaN Inf
[256,] 1000.00000 NaN Inf
asymp-w_Li_n(log(arg))
[1,] 17.94816
[2,] 19.73673
[3,] 21.35567
[4,] 22.84110
[5,] 24.21004
[6,] 25.47414
[7,] 26.64318
[8,] 27.72609
[9,] 28.73110
[10,] 29.66588
[11,] 30.53743
[12,] 31.35211
[13,] 32.11565
[14,] 32.83320
[15,] 33.50929
[16,] 34.14798
[17,] 34.75283
[18,] 35.32700
[19,] 35.87327
[20,] 36.39409
[21,] 36.89164
[22,] 37.36786
[23,] 37.82444
[24,] 38.26291
[25,] 38.68464
[26,] 39.09084
[27,] 39.48260
[28,] 39.86090
[29,] 40.22664
[30,] 40.58062
[31,] 40.92357
[32,] 41.25615
[33,] 41.57898
[34,] 41.89260
[35,] 42.19753
[36,] 42.49424
[37,] 42.78315
[38,] 43.06467
[39,] 43.33916
[40,] 43.60697
[41,] 43.86842
[42,] 44.12379
[43,] 44.37338
[44,] 44.61742
[45,] 44.85617
[46,] 45.08984
[47,] 45.31865
[48,] 45.54280
[49,] 45.76248
[50,] 45.97785
[51,] 46.18909
[52,] 46.39635
[53,] 46.59977
[54,] 46.79950
[55,] 46.99567
[56,] 47.18840
[57,] 47.37781
[58,] 47.56402
[59,] 47.74713
[60,] 47.92723
[61,] 48.10444
[62,] 48.27884
[63,] 48.45051
[64,] 48.61955
[65,] 48.78603
[66,] 48.95003
[67,] 49.11161
[68,] 49.27086
[69,] 49.42784
[70,] 49.58260
[71,] 49.73522
[72,] 49.88575
[73,] 50.03425
[74,] 50.18077
[75,] 50.32537
[76,] 50.46809
[77,] 50.60898
[78,] 50.74809
[79,] 50.88546
[80,] 51.02114
[81,] 51.15516
[82,] 51.28757
[83,] 51.41841
[84,] 51.54771
[85,] 51.67550
[86,] 51.80183
[87,] 51.92672
[88,] 52.05022
[89,] 52.17234
[90,] 52.29312
[91,] 52.41258
[92,] 52.53077
[93,] 52.64770
[94,] 52.76339
[95,] 52.87789
[96,] 52.99120
[97,] 53.10336
[98,] 53.21439
[99,] 53.32431
[100,] 53.43314
[101,] 53.54090
[102,] 53.64762
[103,] 53.75331
[104,] 53.85800
[105,] 53.96170
[106,] 54.06443
[107,] 54.16621
[108,] 54.26706
[109,] 54.36699
[110,] 54.46603
[111,] 54.56417
[112,] 54.66145
[113,] 54.75788
[114,] 54.85347
[115,] 54.94824
[116,] 55.04220
[117,] 55.13536
[118,] 55.22773
[119,] 55.31934
[120,] 55.41020
[121,] 55.50031
[122,] 55.58968
[123,] 55.67834
[124,] 55.76628
[125,] 55.85353
[126,] 55.94010
[127,] 56.02598
[128,] 56.11121
[129,] 56.19577
[130,] 56.27969
[131,] 56.36298
[132,] 56.44564
[133,] 56.52768
[134,] 56.60912
[135,] 56.68996
[136,] 56.77021
[137,] 56.84987
[138,] 56.92897
[139,] 57.00750
[140,] 57.08547
[141,] 57.16289
[142,] 57.23977
[143,] 57.31612
[144,] 57.39195
[145,] 57.46725
[146,] 57.54204
[147,] 57.61633
[148,] 57.69012
[149,] 57.76341
[150,] 57.83622
[151,] 57.90856
[152,] 57.98042
[153,] 58.05181
[154,] 58.12274
[155,] 58.19322
[156,] 58.26325
[157,] 58.33284
[158,] 58.40199
[159,] 58.47071
[160,] 58.53900
[161,] 58.60687
[162,] 58.67432
[163,] 58.74136
[164,] 58.80800
[165,] 58.87424
[166,] 58.94007
[167,] 59.00552
[168,] 59.07058
[169,] 59.13526
[170,] 59.19956
[171,] 59.26348
[172,] 59.32704
[173,] 59.39023
[174,] 59.45306
[175,] 59.51553
[176,] 59.57765
[177,] 59.63943
[178,] 59.70085
[179,] 59.76194
[180,] 59.82269
[181,] 59.88310
[182,] 59.94319
[183,] 60.00294
[184,] 60.06238
[185,] 60.12149
[186,] 60.18029
[187,] 60.23878
[188,] 60.29696
[189,] 60.35483
[190,] 60.41240
[191,] 60.46967
[192,] 60.52664
[193,] 60.58332
[194,] 60.63971
[195,] 60.69581
[196,] 60.75163
[197,] 60.80716
[198,] 60.86242
[199,] 60.91740
[200,] 60.97210
[201,] 61.02654
[202,] 61.08070
[203,] 61.13461
[204,] 61.18824
[205,] 61.24162
[206,] 61.29474
[207,] 61.34761
[208,] 61.40024
[209,] 61.45329
[210,] 61.49269
[211,] 62.34770
[212,] Inf
[213,] Inf
[214,] Inf
[215,] Inf
[216,] Inf
[217,] Inf
[218,] Inf
[219,] Inf
[220,] Inf
[221,] Inf
[222,] Inf
[223,] Inf
[224,] Inf
[225,] Inf
[226,] Inf
[227,] Inf
[228,] Inf
[229,] Inf
[230,] Inf
[231,] Inf
[232,] Inf
[233,] Inf
[234,] Inf
[235,] Inf
[236,] Inf
[237,] Inf
[238,] Inf
[239,] Inf
[240,] Inf
[241,] Inf
[242,] Inf
[243,] Inf
[244,] Inf
[245,] Inf
[246,] Inf
[247,] Inf
[248,] Inf
[249,] Inf
[250,] Inf
[251,] Inf
[252,] Inf
[253,] Inf
[254,] Inf
[255,] Inf
[256,] Inf
There were 45 warnings (use warnings() to see them)
>
> ##--> investigation shows that w is *also* underflowing to 0 (!!!) :
>
> myTracer <- quote({
+ cat(sprintf("Tracing %s: variables at entry are\n",
+ ## the -4 is purely by trial and error -- better?
+ deparse(sys.call(-4)[1])))
+ print(ls.str())
+ })
> trace(polylog, tracer = myTracer, print=FALSE)
Tracing function "polylog" in package "copula"
[1] "polylog"
> ## Tracing function "polylog" in package "copula"
>
> f <- attr(mm,"dacopula")
>
> f(attr(mm,"u"), 825, log=TRUE, method="negI-s-asymp")
Tracing polylog(): variables at entry are
asymp.w.order : num 0
is.log.z : logi TRUE
is.logmlog : logi FALSE
logarithm : logi TRUE
method : chr "negI-s-asymp"
n.sum :
s : num -11
z : num -4.15e-322
[1] 61.48259
> ## ....
> ## z : num -4.15e-322
> ## [1] 61.48259
> f(attr(mm,"u"), 800, log=TRUE, method="negI-s-asymp")
Tracing polylog(): variables at entry are
asymp.w.order : num 0
is.log.z : logi TRUE
is.logmlog : logi FALSE
logarithm : logi TRUE
method : chr "negI-s-asymp"
n.sum :
s : num -11
z : num -2.44e-312
[1] 61.21416
> ## z : num -2.44e-312
>
> if(FALSE)
+ debug(f)
> ## and then realize that in f(), i.e., Frank's dacopula() final line,
> ## (d-1)*log(theta) + Li. - theta*u.sum - lu
> ## the terms Li. - (theta * u.sum)
> ## 'more or less cancel' -- so if we could compute a
> ## *different* rescaled polylog() .. maybe we can get better
>
> untrace(polylog)
Untracing function "polylog" in package "copula"
>
> if(doExtras)
+ ## and similarly here:
+ ll <- p.log.f(1, 12000, d = 12, u0 = 0.08)
>
> showProc.time()
Time elapsed: 0.61 0.03 0.64
>
> ###------- Diagonal MLE --- dDiag() , etc ----------------------------------
>
> ## Some basic dDiag() checks {that failed earlier}:
> stopifnot(identical(0, dDiag(0, onacopulaL("AMH", list(0.5, 1:4)))),
+ all.equal(dDiag(.9, onacopulaL("Frank", list(44, 1:3))),
+ 1.008252, tolerance= 1e-5),
+ all.equal(dDiag(.9, onacopulaL("Joe", list(44, 1:3))),
+ 1.025283, tolerance= 1e-5),
+ TRUE)
>
> demo("dDiag-plots", package = "copula")
demo(dDiag-plots)
---- ~~~~~~~~~~~
> ## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
> ##
> ## This program is free software; you can redistribute it and/or modify it under
> ## the terms of the GNU General Public License as published by the Free Software
> ## Foundation; either version 3 of the License, or (at your option) any later
> ## version.
> ##
> ## This program is distributed in the hope that it will be useful, but WITHOUT
> ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
> ## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
> ## details.
> ##
> ## You should have received a copy of the GNU General Public License along with
> ## this program; if not, see .
>
>
> p.dDiag <-
+ function(family, d, n = 1000, log = FALSE,
+ tau = c(0.01,
+ ## First tau = 0.01 for all families
+ if(family=="AMH") c((1:3)/10, 0.33) else
+ c((1:9)/10, .95, 0.99, .999)),
+ lty = 1:3,
+ cols = adjustcolor(colorRampPalette(c("red", "orange", "blue"),
+ space = "Lab")(length(tau)), 0.8))
+ {
+ stopifnot(length(d) == 1, d == as.integer(d), d >= 2, n >= 10)
+ cop <- getAcop(family)
+ th. <- cop@iTau(tau)
+ u <- seq(0,1, length = n)
+ mainTit <-
+ paste("Diagonal densities of ", family, "\n d = ",d,
+ if(log)", log = TRUE", sep="")
+ c.tau <- format(tau)
+ c.th <- format(th., scientific=FALSE, digits = 4)
+
+ ## yMat <- sapply(th., function(theta)
+ ## dDiag(u, cop=onacopulaL(family, list(theta, 1:d)),
+ ## log=log))
+ ## The "generic" Archimedean dDiag():
+ yM.a <- sapply(th., function(theta)
+ copula:::dDiagA(u, d=d, cop= setTheta(cop, theta), log=log))
+ ## The dDiag-*s*lot :
+ yM.s <- sapply(th., function(theta)
+ cop@dDiag(u, theta=theta, d=d, log=log))
+
+ p.oneMat <- function(yMat, label) {
+ thisTit <- paste(label, mainTit, sep=": ")
+ non.fin <- !is.finite(yMat)
+ ## Rather: in log-scale, -Inf may be ok :
+ if(log) non.fin <- non.fin & (is.na(yMat) | yMat != -Inf)
+ nF.mat <-
+ if(any(has.nF <- apply(non.fin, 2, any))) {
+ i.non.fin <- apply(non.fin, 2, which.max)
+ i.non.fin[!has.nF] <- NA
+ cat(thisTit,":\n non-finite values -- for (theta, u >= *):\n")
+ print(cbind(theta = th.[has.nF], u = u[i.non.fin[has.nF]]))
+ }
+ matplot(u, yMat, type = "l", col = cols, lty = lty,
+ ylab="dDiag(u, *)", main= thisTit)
+ if(any(has.nF)) { ## mark the end points
+ i1 <- i.non.fin - 1
+ points(u[i1], yMat[cbind(i1, seq_along(tau))],
+ col = cols, cex = 1.5, lwd=2, pch = 4)
+ }
+ abline(h=0, lty=3)
+ lleg <- lapply(seq_along(tau), function(j) {
+ cc <- if(has.nF[j]) {
+ i <- i.non.fin[j]
+ sprintf(" f(%.3g) = %g", u[i], yMat[i,j])
+ }
+ substitute(list(tau == TAU, theta == TH) ~ COMM,
+ list(TAU= c.tau[j], TH= c.th[j], COMM= cc))
+
+ })
+ legend(if(log)"bottomright" else "topleft",
+ do.call(expression, lleg),
+ lty = lty, col=cols, bty="n")
+ }## end{ p.oneMat() }
+
+ p.oneMat(yM.a, "dDiagA()")
+ p.oneMat(yM.s, "cop @ dDiag()")
+
+ invisible(list(d = d, tau=tau, theta=th., u = u, dDiag.a = yM.a, dDiag.s = yM.s))
+ }
> if(!exists("doExtras") || !is.logical(doExtras))
+ doExtras <- interactive() || nzchar(Sys.getenv("R_copula_check_extra"))
> doExtras
[1] FALSE
> par(ask = dev.interactive(orNone = TRUE))
> r.dDiag.3 <- lapply(.ac.longNames,
+ function(family) p.dDiag(family, d = 3))
dDiagA(): Diagonal densities of Clayton
d = 3 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 198 0.001001001
[2,] 1998 0.001001001
dDiagA(): Diagonal densities of Frank
d = 3 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 3998.354 0.1781782
dDiagA(): Diagonal densities of Gumbel
d = 3 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.010101 1.000000000
[2,] 1.111111 1.000000000
[3,] 1.250000 1.000000000
[4,] 1.428571 1.000000000
[5,] 1.666667 1.000000000
[6,] 2.000000 1.000000000
[7,] 2.500000 1.000000000
[8,] 3.333333 1.000000000
[9,] 5.000000 1.000000000
[10,] 10.000000 1.000000000
[11,] 20.000000 1.000000000
[12,] 100.000000 1.000000000
[13,] 1000.000000 0.001001001
dDiagA(): Diagonal densities of Joe
d = 3 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.017448 1.0000000
[2,] 1.194410 1.0000000
[3,] 1.443824 1.0000000
[4,] 1.772108 1.0000000
[5,] 2.219066 1.0000000
[6,] 2.856238 1.0000000
[7,] 3.826639 1.0000000
[8,] 5.463756 1.0000000
[9,] 8.767709 1.0000000
[10,] 18.738688 1.0000000
[11,] 38.724328 1.0000000
[12,] 198.712959 0.9739740
[13,] 1998.710414 0.3023023
> r.dDiag.4.L <- lapply(.ac.longNames,
+ function(family) p.dDiag(family, d = 4, log=TRUE))
dDiagA(): Diagonal densities of Frank
d = 4, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 3998.354 0.1871872
dDiagA(): Diagonal densities of Gumbel
d = 4, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.010101 1.0000000
[2,] 1.111111 1.0000000
[3,] 1.250000 1.0000000
[4,] 1.428571 1.0000000
[5,] 1.666667 1.0000000
[6,] 2.000000 1.0000000
[7,] 2.500000 1.0000000
[8,] 3.333333 1.0000000
[9,] 5.000000 1.0000000
[10,] 10.000000 1.0000000
[11,] 20.000000 1.0000000
[12,] 100.000000 1.0000000
[13,] 1000.000000 0.6226226
dDiagA(): Diagonal densities of Joe
d = 4, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.017448 1.0000000
[2,] 1.194410 1.0000000
[3,] 1.443824 1.0000000
[4,] 1.772108 1.0000000
[5,] 2.219066 1.0000000
[6,] 2.856238 1.0000000
[7,] 3.826639 1.0000000
[8,] 5.463756 1.0000000
[9,] 8.767709 1.0000000
[10,] 18.738688 1.0000000
[11,] 38.724328 1.0000000
[12,] 198.712959 0.9769770
[13,] 1998.710414 0.3113113
> r.dDiag.15 <- lapply(.ac.longNames,
+ function(family) p.dDiag(family, d = 15))
dDiagA(): Diagonal densities of Clayton
d = 15 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 198 0.001001001
[2,] 1998 0.001001001
dDiagA(): Diagonal densities of Frank
d = 15 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 3998.354 0.1791792
dDiagA(): Diagonal densities of Gumbel
d = 15 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.010101 1.000000000
[2,] 1.111111 1.000000000
[3,] 1.250000 1.000000000
[4,] 1.428571 1.000000000
[5,] 1.666667 1.000000000
[6,] 2.000000 1.000000000
[7,] 2.500000 1.000000000
[8,] 3.333333 1.000000000
[9,] 5.000000 1.000000000
[10,] 10.000000 1.000000000
[11,] 20.000000 1.000000000
[12,] 100.000000 1.000000000
[13,] 1000.000000 0.001001001
dDiagA(): Diagonal densities of Joe
d = 15 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.017448 1.0000000
[2,] 1.194410 1.0000000
[3,] 1.443824 1.0000000
[4,] 1.772108 1.0000000
[5,] 2.219066 1.0000000
[6,] 2.856238 1.0000000
[7,] 3.826639 1.0000000
[8,] 5.463756 1.0000000
[9,] 8.767709 1.0000000
[10,] 18.738688 1.0000000
[11,] 38.724328 1.0000000
[12,] 198.712959 0.9739740
[13,] 1998.710414 0.3023023
> r.dDiag.75 <- lapply(.ac.longNames,
+ function(family) p.dDiag(family, d = 75))
dDiagA(): Diagonal densities of Clayton
d = 75 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 198 0.001001001
[2,] 1998 0.001001001
dDiagA(): Diagonal densities of Frank
d = 75 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 3998.354 0.1791792
dDiagA(): Diagonal densities of Gumbel
d = 75 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.010101 1.000000000
[2,] 1.111111 1.000000000
[3,] 1.250000 1.000000000
[4,] 1.428571 1.000000000
[5,] 1.666667 1.000000000
[6,] 2.000000 1.000000000
[7,] 2.500000 1.000000000
[8,] 3.333333 1.000000000
[9,] 5.000000 1.000000000
[10,] 10.000000 1.000000000
[11,] 20.000000 1.000000000
[12,] 100.000000 1.000000000
[13,] 1000.000000 0.001001001
dDiagA(): Diagonal densities of Joe
d = 75 :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.017448 1.0000000
[2,] 1.194410 1.0000000
[3,] 1.443824 1.0000000
[4,] 1.772108 1.0000000
[5,] 2.219066 1.0000000
[6,] 2.856238 1.0000000
[7,] 3.826639 1.0000000
[8,] 5.463756 1.0000000
[9,] 8.767709 1.0000000
[10,] 18.738688 1.0000000
[11,] 38.724328 1.0000000
[12,] 198.712959 0.9739740
[13,] 1998.710414 0.3023023
> r.dDiag.200.L <- lapply(.ac.longNames,
+ function(family) p.dDiag(family, d = 200, log=TRUE))
dDiagA(): Diagonal densities of Frank
d = 200, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 3998.354 0.1871872
dDiagA(): Diagonal densities of Gumbel
d = 200, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.010101 1.0000000
[2,] 1.111111 1.0000000
[3,] 1.250000 1.0000000
[4,] 1.428571 1.0000000
[5,] 1.666667 1.0000000
[6,] 2.000000 1.0000000
[7,] 2.500000 1.0000000
[8,] 3.333333 1.0000000
[9,] 5.000000 1.0000000
[10,] 10.000000 1.0000000
[11,] 20.000000 1.0000000
[12,] 100.000000 1.0000000
[13,] 1000.000000 0.6226226
dDiagA(): Diagonal densities of Joe
d = 200, log = TRUE :
non-finite values -- for (theta, u >= *):
theta u
[1,] 1.017448 1.0000000
[2,] 1.194410 1.0000000
[3,] 1.443824 1.0000000
[4,] 1.772108 1.0000000
[5,] 2.219066 1.0000000
[6,] 2.856238 1.0000000
[7,] 3.826639 1.0000000
[8,] 5.463756 1.0000000
[9,] 8.767709 1.0000000
[10,] 18.738688 1.0000000
[11,] 38.724328 1.0000000
[12,] 198.712959 0.9769770
[13,] 1998.710414 0.3113113
> if(doExtras)
+ demo("dDiag-plots-part-2")
> ## ------------------ ../demo/dDiag-plots-part-2.R
> ## FIXME? get 'echo', 'ask' , 'verbose' from *our own* caller -- how?
> ## -----------> ../demo/dDiag-plots.R
>
> showProc.time()
Time elapsed: 1.95 0.03 1.99
>
> ## A problem to solve:
> curve(copAMH@dDiag(exp(-x), theta=.9, d=4, log=TRUE), 0, 500, n=2001,
+ col = 2, lwd= 2,
+ main = "FIXME (*not* urgent): dDiag(u, , log=TRUE) for small u")
>
> showProc.time()
Time elapsed: 0.02 0 0.01
>
> ##----------- Test all estimation methods ----------------
>
> ## all methods
> (estMeth <- eval(formals(enacopula)$method))
[1] "mle" "smle" "dmle" "mde.chisq.CvM"
[5] "mde.chisq.KS" "mde.gamma.CvM" "mde.gamma.KS" "tau.tau.mean"
[9] "tau.theta.mean" "beta"
>
> ## Use selected (the best 6) estimation methods:
> ## (estMeth <- c("mle", "smle", "dmle", "tau.tau.mean", "mde.chisq.CvM", "mde.chisq.KS"))
>
> n <- if(doExtras) 128 else 8
> d <- 6 ; theta <- 2
> (cop <- onacopula("Clayton", C(theta, 1:d)))
Nested Archimedean copula ("outer_nacopula" of dim. 6), with slot
'comp' = (1, 2, 3, 4, 5, 6) and root
'copula' = Archimedean copula ("acopula"), family "Clayton", theta= (2)
and *no* child copulas
> set.seed(1)
> U <- rnacopula(n, cop)
> ## Show that 'racopula()' is indeed identical {and faster for the case of non-nested}
> stopifnot(identical(U,
+ {set.seed(1); copula:::racopula(n, copClayton, theta=theta, d=d)}))
>
> rr <- sapply(estMeth, function(e) {
+ enacopula(U, cop, e, n.MC = if(e == "smle") 1000 else 0)
+ })
>
> round(cbind(rr, bias = rr - theta), 3)
rr bias
mle 2.997 0.997
smle 2.922 0.922
dmle 1.284 -0.716
mde.chisq.CvM 2.846 0.846
mde.chisq.KS 2.725 0.725
mde.gamma.CvM 2.710 0.710
mde.gamma.KS 0.000 -2.000
tau.tau.mean 1.750 -0.250
tau.theta.mean 2.086 0.086
beta 0.843 -1.157
>
> showProc.time()
Time elapsed: 0.08 0.02 0.1
>
> ### 2-level nested Archimedean copulas :
> if(doExtras) {
+ ## was simply (!) : demo("dnac-demo")
+ v.dnac <- vignette("dNAC", package="copula")
+ R.dnac <-
+ if(nzchar(v.dnac$R))
+ with(v.dnac, file.path(Dir, "doc", R))
+ else { ## default: knitr::rmarkdown() unfortunately does *not* provide R
+ stopifnot(file.exists(ff <- with(v.dnac, file.path(Dir, "doc", File))))
+ oR <- file.path(tempdir(), sub("Rmd$", "R", basename(ff)))
+ knitr::purl(ff, output = oR)
+ oR
+ }
+ cat("R file: ", R.dnac, "\n -- now source()ing it :\n")
+ source(R.dnac, echo = TRUE, max.deparse.length = Inf,
+ keep.source = TRUE, encoding = getOption("encoding"))
+ }
>
>
> showProc.time()
Time elapsed: 0 0 0
>
> proc.time()
user system elapsed
4.56 0.20 4.75