context("Qsr output") skip_on_cran() library(survey) library(laeken) library(vardpoor) data(eusilc) names(eusilc) <- tolower(names(eusilc)) dati = data.frame(IDd = seq(10000 , 10000 + nrow(eusilc) - 1) , eusilc) SE_lin2 <- function(t, des) { variance <- survey::svyrecvar(t / des$prob, des$cluster, des$strata, des$fpc, postStrata = des$postStrata) sqrt(variance) } des_eusilc <- svydesign( ids = ~ rb030, strata = ~ db040, weights = ~ rb050, data = eusilc ) des_eusilc <- convey_prep(des_eusilc) vardpoor_qsrw <- linqsr( Y = "eqincome", id = "IDd", weight = "rb050", dataset = dati ) vardest <- vardpoor_qsrw$value$QSR attributes(vardest) <- NULL vardest <- unlist(vardest) varse <- SE_lin2(vardpoor_qsrw$lin$lin_qsr, des_eusilc) attributes(varse) <- NULL fun_qsrw <- svyqsr( ~ eqincome, design = des_eusilc) convest <- coef(fun_qsrw) attributes(convest) <- NULL convse <- SE(fun_qsrw) attributes(convse) <- NULL #domain vardpoor_qsrd <- linqsr( Y = "eqincome", id = "IDd", weight = "rb050", Dom = c("hsize"), dataset = dati ) # point estimates vardestd <- unlist(vardpoor_qsrd$value$QSR) # se estimates varsed <- sapply(data.frame(vardpoor_qsrd$lin)[, 2:10], function(t) SE_lin2(t, des_eusilc)) attributes (varsed) <- NULL # library convey fun_qsrd <- svyby( ~ eqincome, by = ~ hsize, design = des_eusilc, FUN = svyqsr, deff = FALSE ) convestd <- coef(fun_qsrd) attributes(convestd) <- NULL convsed <- SE(fun_qsrd) test_that("compare results convey vs vardpoor", { expect_equal(vardest, convest) expect_equal(varse, convse) expect_equal(vardestd, convestd) expect_equal(varsed, convsed) })