# compares with vardpoor output skip_on_cran() # load libraries library(laeken) library(survey) library(vardpoor) # test context context("svygini comparison with vardpoor") # collect and format data data(eusilc) names(eusilc) <- tolower(names(eusilc)) # create new data.frame dati = data.frame(IDd = seq(10000 , 10000 + nrow(eusilc) - 1) , eusilc) # custom function for variance estimation SE_lin2 <- function(t , des) { variance <- survey::svyrecvar(t / des$prob , des$cluster , des$strata , des$fpc , postStrata = des$postStrata) sqrt(variance) } ### convey calculations # build survey design objects des_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = eusilc ) des_eusilc_rep <- as.svrepdesign(des_eusilc , type = "bootstrap") # prepare survey design objects for convey des_eusilc <- convey_prep(des_eusilc) des_eusilc_rep <- convey_prep(des_eusilc_rep) # calculate estimates using convey fun_giniw <- svygini(~ eqincome , des_eusilc) fun_giniw_rep <- svygini(~ eqincome , des_eusilc_rep) # collect point estimates from convey object convest <- coef(fun_giniw) attributes(convest) <- NULL # collect SE estimates from convey object convse <- SE(fun_giniw) attributes(convse) <- NULL ### vardpoor calculations # calculate estimates with vardpoor vardpoor_giniw <- lingini( Y = "eqincome", id = "IDd", weight = "rb050", Dom = NULL, dataset = dati ) # set up coefficients object vardest <- vardpoor_giniw$value attributes(vardest) <- NULL vardest <- unlist(vardest) # calculate SE using vardpoor linearization, but survey's variance estimation function varse <- SE_lin2(vardpoor_giniw$lin$lin_gini , des_eusilc) attributes(varse) <- NULL ##### domain estimation ### using vardpoor # domain esitmation using vardpoor vardpoor_ginid <- lingini( Y = "eqincome" , id = "IDd" , weight = "rb050" , Dom = "hsize" , dataset = dati ) # colect point estimates vardestd <- unlist(vardpoor_ginid$value$Gini) # calculate SE using vardpoor linearization, but survey's variance estimation function varsed <- sapply(data.frame(vardpoor_ginid$lin)[, 2:10] , function(t) SE_lin2(t , des_eusilc)) attributes(varsed) <- NULL ### using convey # calculate estimates fun_ginid <- svyby(~ eqincome , ~ hsize , des_eusilc , svygini) # collect point estimates convestd <- coef(fun_ginid) attributes(convestd) <- NULL # collect SE estimates convsed <- SE(fun_ginid) # perform tests test_that("compare results convey vs vardpoor", { # compare point estimates expect_equal(vardest[[1]] , convest * 100) # compare point estimates on domains expect_equal(vardestd , convestd * 100) # compare SE estimates expect_equal(varse , convse * 100) expect_equal(varsed , convsed * 100) })