context("Svyrmir output survey.design and svyrep.design") skip_on_cran() library(laeken) library(survey) data(api) dstrat1<-convey_prep(svydesign(id=~1,data=apistrat)) test_that("svyrmir works on unweighted designs",{ svyrmir(~api00, design=dstrat1, age = ~emer) }) data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) ) des_eusilc <- svydesign(ids = ~rb030, strata =~db040, weights = ~rb050, data = eusilc) des_eusilc <- convey_prep(des_eusilc) des_eusilc_rep <-as.svrepdesign(des_eusilc, type= "bootstrap") des_eusilc_rep <- convey_prep(des_eusilc_rep) a1 <- svyrmir( ~eqincome , design = des_eusilc , age = ~age ) a2 <- svyby(~eqincome, by = ~hsize, design = subset( des_eusilc , hsize < 8 ), FUN = svyrmir, age = ~age ) b1 <- svyrmir( ~eqincome , design = des_eusilc_rep , age = ~age ) b2 <- svyby(~eqincome, by = ~hsize, design = subset( des_eusilc_rep, hsize < 8 ), FUN = svyrmir, age = ~age ) se_dif1 <- abs(SE(a1)-SE(b1)) se_diff2 <- max(abs(SE(a2)-SE(b2))) test_that("output svyrmir",{ expect_is(coef(a1),"numeric") expect_is(coef(a2), "numeric") expect_is(coef(b1),"numeric") expect_is(coef(b2),"numeric") expect_lte(se_dif1, coef(a1) * 0.05 ) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it expect_lte(se_diff2, max( coef(a2) ) * 0.1 ) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it expect_equal(coef(a1), coef(b1)) expect_equal(coef(a2), coef(b2)) expect_is(SE(a1),"matrix") expect_is(SE(a2), "numeric") expect_is(SE(b1),"numeric") expect_is(SE(b2),"numeric") expect_lte(confint(a1)[1], coef(a1)) expect_gte(confint(a1)[2],coef(a1)) expect_lte(confint(b1)[1], coef(b1)) expect_gte(confint(b1)[2], coef(b1)) expect_equal(sum(confint(a2)[1:7,1]<= coef(a2)[1:7]),length(coef(a2)[1:7])) expect_equal(sum(confint(a2)[1:7,2]>= coef(a2)[1:7]),length(coef(a2)[1:7])) expect_equal(sum(confint(b2)[1:7,1]<= coef(b2)[1:7]),length(coef(b2)[1:7])) expect_equal(sum(confint(b2)[1:7,2]>= coef(b2)[1:7]),length(coef(b2)[1:7])) }) # database-backed design library(RSQLite) library(DBI) dbfile <- tempfile() conn <- dbConnect( RSQLite::SQLite() , dbfile ) dbWriteTable( conn , 'eusilc' , eusilc ) dbd_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data="eusilc", dbname=dbfile, dbtype="SQLite" ) dbd_eusilc <- convey_prep( dbd_eusilc ) c1 <- svyrmir( ~ eqincome , design = dbd_eusilc , age = ~age ) c2 <- svyby(~ eqincome, by = ~hsize, design = subset(dbd_eusilc,hsize<8), FUN = svyrmir , age = ~age ) dbRemoveTable( conn , 'eusilc' ) dbDisconnect( conn ) test_that("database svyrmir",{ expect_equal(coef(a1), coef(c1)) expect_equal(coef(a2), coef(c2)) expect_equal(SE(a1), SE(c1)) expect_equal(SE(a2), SE(c2)) }) # compare subsetted objects to svyby objects sub_des <- svyrmir( ~eqincome , design = subset( des_eusilc , hsize == 1 ) , age = ~age ) sby_des <- svyby( ~eqincome, by = ~hsize, design = des_eusilc, FUN = svyrmir , age = ~age ) sub_rep <- svyrmir( ~eqincome , design = subset( des_eusilc_rep , hsize == 1 ) , age = ~age ) sby_rep <- svyby( ~eqincome, by = ~hsize, design = des_eusilc_rep, FUN = svyrmir , age = ~age ) test_that("subsets equal svyby",{ expect_equal(as.numeric(coef(sub_des)), as.numeric(coef(sby_des))[1]) expect_equal(as.numeric(coef(sub_rep)), as.numeric(coef(sby_rep))[1]) expect_equal(as.numeric(SE(sub_des)), as.numeric(SE(sby_des))[1]) expect_equal(as.numeric(SE(sub_rep)), as.numeric(SE(sby_rep))[1]) # coefficients should match across svydesign & svrepdesign expect_equal(as.numeric(coef(sub_des)), as.numeric(coef(sby_rep))[1]) # coefficients of variation should be within five percent cv_dif <- abs(cv(sub_des)-cv(sby_rep)[1]) expect_lte(cv_dif,5) }) # second run of database-backed designs # # database-backed design library(RSQLite) library(DBI) dbfile <- tempfile() conn <- dbConnect( RSQLite::SQLite() , dbfile ) dbWriteTable( conn , 'eusilc' , eusilc ) dbd_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data="eusilc", dbname=dbfile, dbtype="SQLite" ) dbd_eusilc <- convey_prep( dbd_eusilc ) # create a hacky database-backed svrepdesign object # mirroring des_eusilc_rep dbd_eusilc_rep <- svrepdesign( weights = ~ rb050, repweights = des_eusilc_rep$repweights , scale = des_eusilc_rep$scale , rscales = des_eusilc_rep$rscales , type = "bootstrap" , data = "eusilc" , dbtype="SQLite" , dbname = dbfile , combined.weights = FALSE ) dbd_eusilc_rep <- convey_prep( dbd_eusilc_rep ) sub_dbd <- svyrmir( ~eqincome , design = subset( dbd_eusilc , hsize == 1 ) , age = ~age ) sby_dbd <- svyby( ~eqincome, by = ~hsize, design = dbd_eusilc, FUN = svyrmir , age = ~age ) sub_dbr <- svyrmir( ~eqincome , design = subset( dbd_eusilc_rep , hsize == 1 ) , age = ~age ) sby_dbr <- svyby( ~eqincome, by = ~hsize, design = dbd_eusilc_rep, FUN = svyrmir , age = ~age ) dbRemoveTable( conn , 'eusilc' ) dbDisconnect( conn ) # compare database-backed designs to non-database-backed designs test_that("dbi subsets equal non-dbi subsets",{ expect_equal(coef(sub_des), coef(sub_dbd)) expect_equal(coef(sub_rep), coef(sub_dbr)) expect_equal(SE(sub_des), SE(sub_dbd)) expect_equal(SE(sub_rep), SE(sub_dbr)) }) # compare database-backed subsetted objects to database-backed svyby objects test_that("dbi subsets equal dbi svyby",{ expect_equal(as.numeric(coef(sub_dbd)), as.numeric(coef(sby_dbd))[1]) expect_equal(as.numeric(coef(sub_dbr)), as.numeric(coef(sby_dbr))[1]) expect_equal(as.numeric(SE(sub_dbd)), as.numeric(SE(sby_dbd))[1]) expect_equal(as.numeric(SE(sub_dbr)), as.numeric(SE(sby_dbr))[1]) })