skip_on_cran() # load libraries library(survey) library(laeken) # library( vardpoor ) # return test context context("svywattsdec-relm output survey.design and svyrep.design") ### test 1: test if funtion works on unweighted objects # load data data("api") # set up convey design expect_warning(dstrat1 <- convey_prep(svydesign(id = ~ 1, data = apistrat))) # perform tests test_that("svywattsdec works on unweighted designs" , { expect_false(anyNA(coef( svywattsdec( ~ api00, design = dstrat1 , percent = .8 , type_thresh = "relm" ) ))) expect_false(anyNA (SE( svywattsdec( ~ api00, design = dstrat1 , percent = .8 , type_thresh = "relm" ) ))) }) ### test 2: income data from eusilc --- data.frame-backed design object # collect and format data data(eusilc) names(eusilc) <- tolower(names(eusilc)) # set up survey design objects des_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = eusilc ) des_eusilc_rep <- as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50) # prepare for convey des_eusilc <- convey_prep(des_eusilc) des_eusilc_rep <- convey_prep(des_eusilc_rep) # filter positive des_eusilc <- subset(des_eusilc , eqincome > 0) des_eusilc_rep <- subset(des_eusilc_rep , eqincome > 0) # filter positive des_eusilc <- subset(des_eusilc , hsize < 7) des_eusilc_rep <- subset(des_eusilc_rep , hsize < 7) # calculate estimates a1 <- svywattsdec(~ eqincome , des_eusilc , type_thresh = "relm") a2 <- svyby(~ eqincome , ~ hsize, des_eusilc , svywattsdec , type_thresh = "relm") b1 <- svywattsdec(~ eqincome , des_eusilc_rep , type_thresh = "relm") b2 <- svyby(~ eqincome , ~ hsize, des_eusilc_rep , svywattsdec , type_thresh = "relm") d1 <- svywatts(~ eqincome , des_eusilc , type_thresh = "relm") d2 <- svyby(~ eqincome , ~ hsize, des_eusilc , svywatts , type_thresh = "relm") e1 <- svywatts(~ eqincome , des_eusilc_rep , type_thresh = "relm") e2 <- svyby(~ eqincome , ~ hsize, des_eusilc_rep , svywatts , type_thresh = "relm") # calculate auxilliary tests statistics cv_diff1 <- max(abs(cv(a1) - cv(b1))) se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE) # perform tests test_that("output svywattsdec" , { expect_is(coef(a1) , "numeric") expect_is(coef(a2) , "numeric") expect_is(coef(b1) , "numeric") expect_is(coef(b2) , "numeric") expect_equal(coef(a1) , coef(b1)) expect_equal(coef(a2) , coef(b2)) # expect_lte( cv_diff1 , coef(a1) * 0.20 ) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it expect_lte(se_diff2 , max(coef(a2)) * 0.20) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it expect_is(SE(a1) , "numeric") # expect_is( SE( a2 ) , "matrix" ) expect_is(SE(b1) , "numeric") # expect_is( SE( b2 ) , "numeric" ) expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2))) expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2))) expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2))) expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2))) expect_equal(coef(a1)[[1]] , coef(d1)[[1]]) expect_equal(as.numeric(coef(a2)[1:2]) , as.numeric(coef(d2))[1:2]) # compare with svywatts expect_equal(SE(a1)[[1]] , SE(d1)[[1]]) expect_equal(as.numeric(SE(a2)[, 1]) , as.numeric(SE(d2))) expect_equal(SE(b1)[[1]] , SE(e1)[[1]]) expect_equal(as.numeric(SE(b2)[, 1]) , as.numeric(SE(e2))) }) ### test 2: income data from eusilc --- database-backed design object # perform tests test_that("database svywattsdec", { # skip test on cran skip_on_cran() # load libraries library(RSQLite) library(DBI) # set-up database dbfile <- tempfile() conn <- dbConnect(RSQLite::SQLite() , dbfile) dbWriteTable(conn , 'eusilc' , eusilc) # database-backed design dbd_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = "eusilc", dbname = dbfile, dbtype = "SQLite" ) # prepare for convey dbd_eusilc <- convey_prep(dbd_eusilc) # filter positive dbd_eusilc <- subset(dbd_eusilc , eqincome > 0) # filter cases dbd_eusilc <- subset(dbd_eusilc , hsize < 7) # calculate estimates c1 <- svywattsdec(~ eqincome , dbd_eusilc , type_thresh = "relm") c2 <- svyby(~ eqincome , ~ hsize, dbd_eusilc , svywattsdec , type_thresh = "relm") # remove table and close connection to database dbRemoveTable(conn , 'eusilc') dbDisconnect(conn) # peform tests expect_equal(coef(a1) , coef(c1)) expect_equal(coef(a2) , coef(c2)) expect_equal(SE(a1) , SE(c1)) expect_equal(SE(a2) , SE(c2)) }) ### test 3: compare subsetted objects to svyby objects # calculate estimates sub_des <- svywattsdec(~ eqincome , design = subset(des_eusilc , hsize == 1) , type_thresh = "relm") sby_des <- svyby( ~ eqincome, by = ~ hsize, design = des_eusilc, FUN = svywattsdec , type_thresh = "relm" ) sub_rep <- svywattsdec(~ eqincome , design = subset(des_eusilc_rep , hsize == 1) , type_thresh = "relm") sby_rep <- svyby( ~ eqincome, by = ~ hsize, design = des_eusilc_rep, FUN = svywattsdec , type_thresh = "relm" ) # perform tests test_that("subsets equal svyby", { # domain vs svyby: coefficients must be equal expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des[1, ]))) expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep[1, ]))) # domain vs svyby: SEs must be equal expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des[1, ]))) expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep[1, ]))) # domain vs svyby and svydesign vs svyrepdesign: # coefficients should match across svydesign expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep[1, ]))) # domain vs svyby and svydesign vs svyrepdesign: # coefficients of variation should be within five percent cv_diff <- max(abs(cv(sub_des) - cv(sby_rep)[1, ])) expect_lte(cv_diff , .5) }) ### test 4: compare subsetted objects to svyby objects # compare database-backed designs to non-database-backed designs test_that("dbi subsets equal non-dbi subsets", { # skip test on cran skip_on_cran() # load libraries library(RSQLite) library(DBI) # set up database dbfile <- tempfile() conn <- dbConnect(RSQLite::SQLite() , dbfile) dbWriteTable(conn , 'eusilc' , eusilc) # create database-backed design (with survey design information) dbd_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = "eusilc", dbname = dbfile, dbtype = "SQLite" ) # create a hacky database-backed svrepdesign object # mirroring des_eusilc_rep dbd_eusilc_rep <- svrepdesign( weights = ~ rb050, repweights = attr(des_eusilc_rep , "full_design")$repweights , scale = attr(des_eusilc_rep , "full_design")$scale , rscales = attr(des_eusilc_rep , "full_design")$rscales , type = "bootstrap" , data = "eusilc" , dbtype = "SQLite" , dbname = dbfile , combined.weights = FALSE ) # prepare for convey dbd_eusilc <- convey_prep(dbd_eusilc) dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep) # filter positive dbd_eusilc <- subset(dbd_eusilc , eqincome > 0) dbd_eusilc_rep <- subset(dbd_eusilc_rep , eqincome > 0) # filter positive dbd_eusilc <- subset(dbd_eusilc , hsize < 7) dbd_eusilc_rep <- subset(dbd_eusilc_rep , hsize < 7) # calculate estimates sub_dbd <- svywattsdec(~ eqincome , design = subset(dbd_eusilc , hsize == 1) , type_thresh = "relm") sby_dbd <- svyby( ~ eqincome, by = ~ hsize, design = dbd_eusilc, FUN = svywattsdec , type_thresh = "relm" ) sub_dbr <- svywattsdec(~ eqincome , design = subset(dbd_eusilc_rep , hsize == 1) , type_thresh = "relm") sby_dbr <- svyby( ~ eqincome, by = ~ hsize, design = dbd_eusilc_rep, FUN = svywattsdec , type_thresh = "relm" ) # remove table and disconnect from database dbRemoveTable(conn , 'eusilc') dbDisconnect(conn) # perform tests expect_equal(coef(sub_des) , coef(sub_dbd)) expect_equal(coef(sub_rep) , coef(sub_dbr)) expect_equal(SE(sub_des) , SE(sub_dbd)) expect_equal(SE(sub_rep) , SE(sub_dbr)) # compare database-backed subsetted objects to database-backed svyby objects # dbi subsets equal dbi svyby expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd[1, ]))) expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr[1, ]))) expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd[1, ]))) expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr[1, ]))) })