skip_on_cran() # load libraries library(survey) library(convey) library(laeken) library(testthat) # library( vardpoor ) # return test context context("jdiv output survey.design and svyrep.design") ### test 1: test if funtion works on unweighted objects # load data data("api") # set up convey design expect_warning(dstrat1 <- convey_prep(svydesign(id = ~ 1, data = apistrat))) # perform tests test_that("svyjdiv works on unweighted designs", { expect_false(is.na (coef( svyjdiv( ~ api00, design = dstrat1 , epsilon = this.epsilon) ))) expect_false(is.na (SE( svyjdiv( ~ api00, design = dstrat1 , epsilon = this.epsilon) ))) }) ### test 2: income data from eusilc --- data.frame-backed design object # collect and format data data(eusilc) names(eusilc) <- tolower(names(eusilc)) # set up survey design objects des_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = eusilc ) des_eusilc_rep <- as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50) # prepare for convey des_eusilc <- convey_prep(des_eusilc) des_eusilc_rep <- convey_prep(des_eusilc_rep) # only striclty positive incomes test_that("error on income <= 0 " , expect_error(svyjdiv( ~ eqincome , des_eusilc , epsilon = this.epsilon))) # filter positive des_eusilc <- subset(des_eusilc , eqincome > 0) des_eusilc_rep <- subset(des_eusilc_rep , eqincome > 0) # calculate estimates a1 <- svyjdiv( ~ eqincome , des_eusilc , deff = TRUE , linearized = TRUE, influence = TRUE ) a2 <- svyby( ~ eqincome , ~ hsize, des_eusilc, svyjdiv , deff = TRUE , covmat = TRUE , influence = TRUE ) a2.nocov <- svyby( ~ eqincome , ~ hsize, des_eusilc, svyjdiv , deff = TRUE , covmat = FALSE , influence = TRUE ) b1 <- svyjdiv( ~ eqincome , des_eusilc_rep , deff = TRUE , linearized = TRUE) b2 <- svyby( ~ eqincome , ~ hsize, des_eusilc_rep, svyjdiv , deff = TRUE , covmat = TRUE) b2.nocov <- svyby( ~ eqincome , ~ hsize, des_eusilc_rep, svyjdiv , deff = TRUE , covmat = FALSE) d1 <- svygei( ~ eqincome , des_eusilc, epsilon = 0, deff = TRUE , linearized = TRUE , influence = TRUE ) e1 <- svygei( ~ eqincome , des_eusilc, epsilon = 1, deff = TRUE , linearized = TRUE , influence = TRUE ) # calculate auxilliary tests statistics cv_diff1 <- abs(cv(a1) - cv(b1)) se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE) # perform tests test_that("output svyjdiv" , { expect_is(coef(a1) , "numeric") expect_is(coef(a2) , "numeric") expect_is(coef(b1) , "numeric") expect_is(coef(b2) , "numeric") expect_equal(coef(a1) , coef(b1)) expect_equal(coef(a2) , coef(b2)) expect_lte(cv_diff1 , coef(a1) * .20) # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it expect_lte(se_diff2 , max(coef(a2)) * .20) # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it expect_is(SE(a1) , "matrix") expect_is(SE(a2) , "numeric") expect_is(SE(b1) , "numeric") expect_is(SE(b2) , "numeric") expect_lte(confint(a1)[1] , coef(a1)) expect_gte(confint(a1)[2] , coef(a1)) expect_lte(confint(b1)[, 1] , coef(b1)) expect_gte(confint(b1)[2] , coef(b1)) expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2))) expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2))) expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2))) expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2))) # check equality of linearized variables expect_equal(attr(a1 , "linearized") , attr(b1 , "linearized")) expect_equal(attr(a1 , "index") , attr(b1 , "index")) # check equality vcov diagonals expect_warning(expect_equal(diag(vcov(a2)) , diag(vcov(a2.nocov)))) expect_warning(expect_equal(diag(vcov(b2)) , diag(vcov(b2.nocov)))) # compare with svygei expect_equal(as.numeric(coef(a1)) , as.numeric(sum(sapply(list( d1 , e1 ) , coef)))) expect_equal(as.numeric(attr(a1 , "linearized")) , as.numeric(rowSums(sapply( list(d1 , e1) , attr , "linearized" )))) expect_equal(as.numeric(attr(a1 , "influence")) , as.numeric(rowSums(sapply( list(d1 , e1) , attr , "influence" )))) expect_equal(attr(a1 , "index") , attr(d1 , "index")) expect_equal(attr(a1 , "index") , attr(e1 , "index")) }) ### test 2: income data from eusilc --- database-backed design object # perform tests test_that("database svyjdiv", { # skip test on cran skip_on_cran() # load libraries library(RSQLite) library(DBI) # set-up database dbfile <- tempfile() conn <- dbConnect(RSQLite::SQLite() , dbfile) dbWriteTable(conn , 'eusilc' , eusilc) # database-backed design dbd_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = "eusilc", dbname = dbfile, dbtype = "SQLite" ) # prepare for convey dbd_eusilc <- convey_prep(dbd_eusilc) # filter positive dbd_eusilc <- subset(dbd_eusilc , eqincome > 0) # calculate estimates c1 <- svyjdiv( ~ eqincome , dbd_eusilc , deff = TRUE , linearized = TRUE , influence = TRUE ) c2 <- svyby( ~ eqincome , ~ hsize, dbd_eusilc, svyjdiv , deff = TRUE , covmat = TRUE , influence = TRUE ) # remove table and close connection to database dbRemoveTable(conn , 'eusilc') dbDisconnect(conn) # peform tests expect_equal(coef(a1) , coef(c1)) expect_equal(coef(a2) , coef(c2)) expect_equal(SE(a1) , SE(c1)) expect_equal(SE(a2) , SE(c2)) expect_equal(deff(a1) , deff(c1)) expect_equal(deff(a2) , deff(c2)) expect_equal(vcov(a1) , vcov(c1)) expect_equal(vcov(a2) , vcov(c2)) # test equality of linearized variables expect_equal(colSums(attr(a1 , "linearized")) , colSums(attr(c1 , "linearized"))) expect_equal(attr(a2 , "linearized") , attr(c2 , "linearized")) expect_equal(colSums(attr(a1 , "influence")) , colSums(attr(c1 , "influence"))) expect_equal(colSums(attr(a2 , "influence")) , colSums(attr(c2 , "influence"))) # expect_equal(attr(a1 , "index") , attr(c1 , "index")) # expect_equal(attr(a2 , "index") , attr(c2 , "index")) }) ### test 3: compare subsetted objects to svyby objects # calculate estimates sub_des <- svyjdiv( ~ eqincome , design = subset(des_eusilc , hsize == 1) , deff = TRUE , linearized = TRUE , influence = TRUE ) sby_des <- svyby( ~ eqincome, by = ~ hsize, design = des_eusilc, FUN = svyjdiv , deff = TRUE , covmat = TRUE , influence = TRUE ) sub_rep <- svyjdiv( ~ eqincome , design = subset(des_eusilc_rep , hsize == 1) , deff = TRUE , linearized = TRUE ) sby_rep <- svyby( ~ eqincome, by = ~ hsize, design = des_eusilc_rep, FUN = svyjdiv , deff = TRUE , covmat = TRUE ) # perform tests test_that("subsets equal svyby", { # domain vs svyby: coefficients must be equal expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des[1,]))) expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep[1,]))) # domain vs svyby: SEs must be equal expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des[1,]))) expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep[1,]))) # domain vs svyby and svydesign vs svyrepdesign: # coefficients should match across svydesign expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep[1,]))) # domain vs svyby and svydesign vs svyrepdesign: # coefficients of variation should be within five percent cv_diff <- max(abs(cv(sub_des) - cv(sby_rep)[1])) expect_lte(cv_diff , .05) # check equality of linearized variables expect_equal(attr(sub_des , "linearized") , attr(sub_rep , "linearized")) # check equality of variances expect_equal(vcov(sub_des)[1] , vcov(sby_des)[1, 1]) expect_equal(vcov(sub_rep)[1] , vcov(sby_rep)[1, 1]) }) ### test 4: compare subsetted objects to svyby objects # compare database-backed designs to non-database-backed designs test_that("dbi subsets equal non-dbi subsets", { # skip test on cran skip_on_cran() # load libraries library(RSQLite) library(DBI) # set up database dbfile <- tempfile() conn <- dbConnect(RSQLite::SQLite() , dbfile) dbWriteTable(conn , 'eusilc' , eusilc) # create database-backed design (with survey design information) dbd_eusilc <- svydesign( ids = ~ rb030 , strata = ~ db040 , weights = ~ rb050 , data = "eusilc", dbname = dbfile, dbtype = "SQLite" ) # create a hacky database-backed svrepdesign object # mirroring des_eusilc_rep dbd_eusilc_rep <- svrepdesign( weights = ~ rb050, repweights = attr(des_eusilc_rep , "full_design")$repweights , scale = attr(des_eusilc_rep , "full_design")$scale , rscales = attr(des_eusilc_rep , "full_design")$rscales , type = "bootstrap" , data = "eusilc" , dbtype = "SQLite" , dbname = dbfile , combined.weights = FALSE ) # prepare for convey dbd_eusilc <- convey_prep(dbd_eusilc) dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep) # filter positive incomes dbd_eusilc <- subset(dbd_eusilc , eqincome > 0) dbd_eusilc_rep <- subset(dbd_eusilc_rep , eqincome > 0) # calculate estimates sub_dbd <- svyjdiv( ~ eqincome , design = subset(dbd_eusilc , hsize == 1) , deff = TRUE , linearized = TRUE , influence = TRUE ) sub_dbr <- svyjdiv( ~ eqincome , design = subset(dbd_eusilc_rep , hsize == 1) , deff = TRUE , linearized = TRUE ) sby_dbd <- svyby( ~ eqincome, by = ~ hsize, design = dbd_eusilc , FUN = svyjdiv , deff = TRUE , covmat = TRUE , influence = TRUE ) sby_dbr <- svyby( ~ eqincome, by = ~ hsize, design = dbd_eusilc_rep , FUN = svyjdiv , deff = TRUE , covmat = TRUE ) # remove table and disconnect from database dbRemoveTable(conn , 'eusilc') dbDisconnect(conn) # perform tests expect_equal(coef(sub_des) , coef(sub_dbd)) expect_equal(coef(sub_rep) , coef(sub_dbr)) expect_equal(SE(sub_des) , SE(sub_dbd)) expect_equal(SE(sub_rep) , SE(sub_dbr)) expect_equal(deff(sub_des) , deff(sub_dbd)) expect_equal(deff(sub_rep) , deff(sub_dbr)) expect_equal(vcov(sub_des) , vcov(sub_dbd)) expect_equal(vcov(sub_rep) , vcov(sub_dbr)) # compare database-backed subsetted objects to database-backed svyby objects # dbi subsets equal dbi svyby expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd[1,]))) expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr[1,]))) expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd[1,]))) expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr[1,]))) expect_equal(vcov(sub_dbd) , vcov(sub_des)) expect_equal(vcov(sub_dbr) , vcov(sub_rep)) # compare equality of linearized variables expect_equal(colSums(attr(sub_dbd , "linearized")) , colSums(attr(sub_dbr , "linearized"))) expect_equal(colSums(attr(sub_dbd , "linearized")) , colSums(attr(sub_des , "linearized"))) expect_equal(attr(sub_dbr , "linearized") , attr(sub_rep , "linearized")) # compare equality of indices # expect_equal(attr(sub_dbd , "index") , attr(sub_dbr , "index")) # expect_equal(attr(sub_dbd , "index") , attr(sub_des , "index")) expect_equal(attr(sub_dbr , "index") , attr(sub_rep , "index")) })