context("Chapter 7") test_that("Chapter 7 functions basically work", { n_short <- floor(table_7.3 / 10) expect_output( object = print(Bonferroni_type_CIs_rxc(table_7.3)), regexp = "pi_1|1 - pi_1|3: estimate = -0.2476 \\(-0.4213 to -0.0740\\)" ) n2 <- rbind(c(51, 7, 6), c(22, 4, 12), c(24, 9, 10)) expect_output( object = print(Cumulative_models_for_rxc(n2)), regexp = "Likelihood ratio\\s+P = 0.00832, T = 9.579 \\(df=2\\)" ) expect_output( object = print(Exact_cond_midP_tests_rxc(n_short)), regexp = "Exact linear-by-linear: P = 0.9754902" ) expect_output( object = print(FisherFreemanHalton_asymptotic_test_rxc(table_7.3)), regexp = "Fisher-Freeman-Halton asymptotic test: P = 0.0003, T = 16.260" ) expect_output( object = print(FisherFreemanHalton_asymptotic_test_rxc(matrix(c(4, 5, 0, 0), 2))), regexp = "Halton asymptotic test: P = 1.0000, T = -0.000 \\(df=1\\)" ) n3_short <- floor(table_7.7 / 10) expect_output( object = { set.seed(1562) print(gamma_coefficient_rxc_bca(n3_short, nboot = 200)) }, regexp = "-0.2137 \\(95% CI -0.5268 to 0.1931\\)" ) expect_output( object = print(gamma_coefficient_rxc(n3_short)), regexp = "The proportion of discordant pairs: 0.606838" ) expect_output( object = print(JonckheereTerpstra_test_rxc(table_7.7)), regexp = "Terpstra test for association: P = 0.006720, Z = -2.710" ) expect_output( regexp = "Fieller CI: tau-b = -0.1235 \\(95% CI -0.2762 to 0.0354\\)", object = print(Kendalls_tau_b_rxc(n3_short)), ) expect_output( object = { set.seed(1562) print(Kendalls_tau_b_rxc_bca(n3_short, nboot = 200)) }, regexp = "bootstrap CI: tau-b = -0.1235 \\(95% CI -0.0863 to 0.3904\\)" ) expect_output( object = print(KruskalWallis_asymptotic_test_rxc(table_7.6)), regexp = "Asymptotic Kruskal-Wallis test: T = 9.162, df = 2, P = 0.010" ) expect_output( object = print(linear_by_linear_test_rxc(table_7.7)), regexp = "linear test for association: P = 0.004321, Z = -2.854", ) expect_output( object = print(Pearson_correlation_coefficient_rxc(n3_short)), regexp = "coefficient: r = 0.2019 \\(95% CI -0.0347 to 0.4171\\)" ) expect_output( object = { set.seed(1562) print( Pearson_correlation_coefficient_rxc_bca(n3_short, nboot = 200, alpha = .2) ) }, regexp = "bootstrap CI: r = 0.2019 \\(80% CI 0.1028 to 0.3698\\)" ) expect_output( object = print(Pearson_LR_tests_rxc(table_7.3)), regexp = "Pearson chi-squared test: T = 17.562, df = 2, P = 0.00015" ) expect_output( object = print(Pearson_residuals_rxc(table_7.3)), regexp = "Pearson residuals:" ) expect_equal( object = dim(Pearson_residuals_rxc(table_7.3)$residuals), expected = c(3, 2) ) expect_output( object = print(Scheffe_type_CIs_rxc(table_7.3)), regexp = "pi_1|2 - pi_1|3: estimate = 0.0222 \\(-0.1181 to 0.1625\\)" ) expect_output( object = print(Spearman_correlation_coefficient_rxc(n3_short)), regexp = "Wright CI: rho = -0.1358 \\(95% CI -0.3603 to 0.1035\\)" ) expect_output( object = { set.seed(562) print(Spearman_correlation_coefficient_rxc_bca(n3_short, nboot = 200)) }, regexp = "bootstrap CI: rho = -0.1358 \\(95% CI -0.3636 to 0.1118\\)" ) expect_output( object = { set.seed(7494) the_rxc_table(n3_short, nboot = 250, alpha = 0.2) }, regexp = "Kruskal-Wallis asymptotic\\s+1.561 \\(df=3\\) 0.668229" ) n4_short <- floor(table_7.4 / 10) expect_output( object = the_rxc_table(n4_short, nboot = 0), regexp = " pi_1|6 - pi_1|6: estimate = 0.0000 \\(-0.8987 to 0.8987\\)" ) })