R Under development (unstable) (2024-01-24 r85824 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(warn=1) > > extensiveCheck <- FALSE > noRobustCheck <- TRUE > if( !noRobustCheck ) { + ################################################### + ### chunk number 1: Bsp1 + ################################################### + #require(robustbase) + require(compositions) + #source("FunctionOutliers.R") + if( ! extensiveCheck ) { + simStore <-"storedsimulations.rda" + if( file.exists(simStore) ) + load(simStore,gsi.pStore) + } + #dades <- read.table("rutile.dat",header=TRUE) + #comp <- acomp(dades[,6:11]) + #nom <- dades[,5] + #location <- dades[,1] + #gsize <-dades[,2] + #losts <- dades[,13:18] + tmp<-set.seed(1400) + A <- matrix(c(0.1,0.2,0.3,0.1),nrow=2) + Mvar <- 0.1*ilrvar2clr(A%*%t(A)) + Mcenter <- acomp(c(1,2,1)) + typicalData <- rnorm.acomp(100,Mcenter,Mvar) # main population + colnames(typicalData)<-c("A","B","C") + data1 <- acomp(rnorm.acomp(100,Mcenter,Mvar)) + data2 <- acomp(rbind(typicalData+rbinom(100,1,p=0.1)*rnorm(100)*acomp(c(4,1,1)))) + data3 <- acomp(rbind(typicalData,acomp(c(0.5,1.5,2)))) + colnames(data3)<-colnames(typicalData) + tmp<-set.seed(30) + # sapply(1:40,function(i) { set.seed(i);max(myMahalanobis.acomp(rnorm.acomp(100,Mcenter,Mvar)))}) + rcauchy.acomp <- function (n, mean, var){ + D <- gsi.getD(mean)-1 + perturbe(ilrInv(matrix(rnorm(n*D)/rep(rnorm(n),D), ncol = D) %*% chol(clrvar2ilr(var))), mean) + } + data4 <- acomp(rcauchy.acomp(100,acomp(c(1,2,1)),Mvar/4)) + colnames(data4)<-colnames(typicalData) + data5 <- acomp(rbind(unclass(typicalData)+outer(rbinom(100,1,p=0.1)*runif(100),c(0.1,1,2)))) + data6 <- acomp(rbind(typicalData,rnorm.acomp(20,acomp(c(4,4,1)),Mvar))) + datas <- list(data1=data1,data2=data2,data3=data3,data4=data4,data5=data5,data6=data6) + tmp <-c() + + if( !extensiveCheck ) + datas <- datas[c(2,5,6)] + + + ################################################### + ### chunk number 2: Fig1 + ################################################### + + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + tmp <- mapply(function(x,y) { + plot(x,cex=0.5); + title(y) + meanRob<- mean(x,robust=TRUE) + covRob <- var(x,robust=TRUE,giveCenter=TRUE) + meanRob<- attr(covRob,"center") + covCla <- cov(x) + meanCla<- mean(x) + ellipses(Mcenter,Mvar,col="green",r=3) + ellipses(meanCla,covCla,col="red",r=3) + ellipses(meanRob,covRob,col="blue",r=3) + },datas,names(datas)) + tmp <- par(opar) + + + ################################################### + ### chunk number 3: Bsp eval=FALSE + ################################################### + ## outlierplot.acomp(comp,type="scatter",class.type="grade") + + + ################################################### + ### chunk number 4: Fig2aa + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + tmp<-mapply(function(x,y) { + outlierplot(x,type="scatter",class.type="grade"); + title(y) + },datas,names(datas)) + + #mapply(function(x,y) { + # outlierplot.acomp(x,type="scatter",classifier=myClassifier3.acomp,class.type="best",legend=print(colcode)); + # title(y) + #},datas,names(datas)) + tmp<-par(opar) + + + ################################################### + ### chunk number 5: Fig2 + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + tmp<-mapply(function(x,y) { + myCls2 <- OutlierClassifier1(x,alpha=0.05,type="all",corrected=TRUE) + outlierplot(x,type="scatter",classifier=OutlierClassifier1,class.type="best", + Legend=legend(1,1,levels(myCls),xjust=1,col=colcode,pch=pchcode), + pch=as.numeric(myCls2)); + legend(0,1,legend=levels(myCls2),pch=1:length(levels(myCls2))) + title(y) + },datas,names(datas)) + + #mapply(function(x,y) { + # outlierplot.acomp(x,type="scatter",classifier=myClassifier3.acomp,class.type="best",legend=print(colcode)); + # title(y) + #},datas,names(datas)) + tmp<-par(opar) + + + ################################################### + ### chunk number 6: Bsp eval=FALSE + ################################################### + ## outlierplot.acomp(comp,type="scatter",class.type="best") + + + ################################################### + ### chunk number 7: Bsp eval=FALSE + ################################################### + ## outlierplot.acomp(comp,type="ecdf") + + + ################################################### + ### chunk number 8: Bsp eval=FALSE + ################################################### + ## outlierplot.acomp(comp,type="nout") + + + ################################################### + ### chunk number 9: Fig3 + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + for( i in 1:length(datas) ) + outlierplot(datas[[i]],type="ecdf",main=names(datas)[i]) + + if( FALSE ) { + for( i in 1:length(datas) ) { + X <- datas[[i]] + K <- sort(MahalanobisDist(X)) + Ks <- seq(min(K),max(K),length.out=100) + cdf <- ecdf(K) + plot(cdf,main="") + lines(Ks,pMahalanobis(Ks,N=nrow(X),d=gsi.getD(X)-1),col="red") + KpQ <- pQuantileMahalanobis(Ks,N=nrow(X),d=gsi.getD(X)-1,p=0.05) + lines(Ks,KpQ,col="green") + # print(ifelse(cdf(K) < KpQ,1-KpQ/(1-cdf(K)),0)) + lines(Ks,ifelse(cdf(Ks) < KpQ,1-(1-KpQ)/(1-cdf(Ks)),0),col="gray") + title(main=names(datas)[i]) + invisible("") + } + } else if(FALSE) { + for( i in 1:length(datas) ) { + X <- datas[[i]] + K <- sort(MahalanobisDist(X)) + Ks <- exp(seq(-5,5,length.out=100)) + cdf <- ecdf(K) + plot(cdf,main="",log="x",xlim=exp(c(-5,5))) + lines(Ks,pMahalanobis(Ks,N=nrow(X),d=gsi.getD(X)-1),col="red",lwd=2) + KpQ <- pQuantileMahalanobis(Ks,N=nrow(X),d=gsi.getD(X)-1,p=0.05) + lines(Ks,KpQ,col="green",lwd=2) + # print(ifelse(cdf(K) < KpQ,1-KpQ/(1-cdf(K)),0)) + lines(Ks,ifelse(cdf(Ks) < KpQ,1-(1-KpQ)/(1-cdf(Ks)),0),col="gray") + title(main=names(datas)[i]) + invisible("") + } + } + + + par(opar) + + + ################################################### + ### chunk number 10: Fig4aa + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + for( i in 1:length(datas) ) { + outlierplot(datas[[i]],type="nout",main=names(datas)[i]) + title(paste("data",i,sep="")) + } + if(FALSE) { + for( i in 1:length(datas) ) { + X <- datas[[i]] + K <- sort(myMahalanobis.acomp(X)) + n <- nrow(X) + cdf <- ecdf(K) + # plot(cdf,main="") + Kp <- pMahalanobis(K,N=nrow(X),d=gsi.getD(X)-1) + # lines(K,Kp,col="gray") + KpQ <- pQuantileMahalanobis(K,N=nrow(X),d=gsi.getD(X)-1,p=0.05) + KpQ2 <- pQunatileMahalanobis(K,N=nrow(X),d=gsi.getD(X)-1,p=0.95) + #lines(K,KpQ,col="gray",lty=2) + #print(ifelse(cdf(K) < KpQ,1-KpQ/(1-cdf(K)),0)) + #print(KpQ2) + plot(0,0,type="n",xlim=exp(c(-5,5)),ylim=n*range(c(Kp-cdf(K),Kp-KpQ,Kp-KpQ2)),log="x") + # print(n*(Kp-KpQ2)) + lines(K,n*(Kp-cdf(K)),col="blue") + lines(K,n*(Kp-KpQ),col="gray",lty=1) + # lines(log(K),n*(Kp-KpQ2),col="green",lty=1) + abline(h=0) + # lines(K,ifelse(cdf(K) < KpQ,1-(1-KpQ)/(1-cdf(K)),0),col="red") + title(main=names(datas)[i]) + } + } + par(opar) + + if( extensiveCheck ) { + + ################################################### + ### chunk number 11: Bsp2 + ################################################### + tmp<-set.seed(1400) + A <- matrix(c(0.1,0.2,0.3,0.1),nrow=2) + Mvar <- 0.1*ilrvar2clr(A%*%t(A)) + Mcenter <- acomp(c(1,2,1)) + typicalData <- rnorm.acomp(100,Mcenter,Mvar) # main population + colnames(typicalData)<-c("A","B","C") + data1a <- acomp(rnorm.acomp(100,Mcenter,Mvar)) + colnames(data1a)<-colnames(typicalData) + data2a <- acomp(rbind(typicalData+rbinom(100,1,p=0.1)*rnorm(100)*0.4*acomp(c(4,1,1)))) + data3a <- acomp(rbind(typicalData,acomp(c(0.1963,0.4618,0.3418)))) + set.seed(30) + # sapply(1:40,function(i) { set.seed(i);max(myMahalanobis.acomp(rnorm.acomp(100,Mcenter,Mvar)))}) + rmixgauss.acomp <- function (n, mean, var){ + D <- gsi.getD(mean)-1 + perturbe(ilrInv(matrix(rnorm(n*D)*rep(rexp(n),D), ncol = D) %*% chol(clrvar2ilr(var))), mean) + } + data4a <- acomp(rmixgauss.acomp(100,acomp(c(1,2,1)),Mvar)) + colnames(data4a)<-colnames(typicalData) + data5a <- acomp(rbind(unclass(typicalData)+outer(0.1*rbinom(100,1,p=0.1)*runif(100),c(0.1,1,2)))) + data6a <- acomp(rbind(typicalData,rnorm.acomp(20,acomp(c(0.28,0.49,0.21)),Mvar))) + datasA <- list(data1a=data1a,data2a=data2a,data3a=data3a,data4a=data4a,data5a=data5a,data6a=data6a) + tmp<-c() + + } + ################################################### + ### chunk number 12: FigCluDir + ################################################### + par(mfrow=c(2,3)) + takeIf <- function(c,x,y) { + y <- ifelse(c,y,y) + y[c]<-x + y + } + if( extensiveCheck ) { + + mapply(function(x,y) { + center <- mean(x,robust=TRUE) + myCls <- OutlierClassifier1(x,type="outlier") + out <- myCls!="ok" + if( sum(out+0)>2 ) { + d <- asin(dist(normalize(acomp(x[out,])-center))/2)*2*180/pi + hc <- hclust(d,"complete") + trx <- cutree(hc,h=15) + cols <- takeIf(out,as.numeric(trx)+1,1) + plot(acomp(x),col=cols,pch=cols,main=y) + title(paste(y,"Aitchison geometry",sep="\n",col="\n")) + } else { + plot.new() + } + },datas[c(2,5,6)],names(datas)[c(2,5,6)]) + mapply(function(x,y) { + center <- mean(rcomp(x)) + myCls <- OutlierClassifier1.acomp(x,type="outlier") + out <- myCls!="ok" + if( sum(out+0)>2 ) { + d <- asin(dist(normalize(ipt(rcomp(x[out,]))-ipt(center)))/2)*2*180/pi + hc <- hclust(d,"complete") + trx <- cutree(hc,h=15) + cols <- takeIf(out,as.numeric(trx)+1,1) + plot(rcomp(x),col=cols,pch=cols,main=y) + title(paste(y,"real geometry",sep="\n",col="\n")) + } else { + plot.new() + } + },datas[c(2,5,6)],names(datas)[c(2,5,6)]) + + # The following is much to time expensive for checking + # + } + if( extensiveCheck ) { + + ################################################### + ### chunk number 13: ReadRutile + ################################################### + #dades <- read.table("rutile.dat",header=TRUE) + data(Hydrochem) + comp <- acomp(Hydrochem[,6:12]) + location <- Hydrochem[,"Location"] + gsize <- Hydrochem[,"River"] + row.names(comp)<- paste("A",1:nrow(comp)) + + ################################################### + ### chunk number 14: FigRutType1 + ################################################### + outlierplot(comp,type="scatter",class.type="grade",main="" ) + #, + # Legend=PSlegend("FigRutileType1Leg.eps", + # legend=levels(myCls),col=colcode,pch=pchcode,horizontal=TRUE,ncol=length(levels(myCls))) + + + ################################################### + ### chunk number 15: FigRutType3 + ################################################### + par(mfrow=c(1,2),mar=c(4,4,1,1)) + outlierplot(comp,type="ecdf") + outlierplot(comp,type="nout") + + + ################################################### + ### chunk number 16: FigRutType2 + ################################################### + outlierplot.acomp(comp,type="scatter",class.type="best",center=TRUE) + + + ################################################### + ### chunk number 17: FigRutClu1 + ################################################### + x<-comp + center <- mean(rcomp(x),robust=TRUE) + myCls <- OutlierClassifier1(x,type="outlier") + out <- myCls!="ok" + d <- asin(dist(normalize(ipt(rcomp(x[out,]))-ipt(center)))/2)*2*180/pi + hc <- hclust(d,"complete") + par(mar=c(1,4,0,0)) + plot(hc,main="",xlab="") + + + ################################################### + ### chunk number 18: FigRutClu1a + ################################################### + trx1 <- cutree(hc,h=50) + cols <- colorsForOutliers1(factor(trx1)) + plot(acomp(x),col=takeIf(out,cols[as.numeric(trx1)],"gray"), + pch=takeIf(out,as.numeric(trx1)+1,"."),center=TRUE) + + + ################################################### + ### chunk number 19: FigRutClu2 + ################################################### + x<-comp + center <- mean(rcomp(x),robust=TRUE) + myCls <- OutlierClassifier1(x,type="outlier") + out <- myCls!="ok" + d <- dist(acomp(x[out,])) + hc <- hclust(d,"complete") + par(mar=c(1,4,0,0)) + plot(hc,main="",xlab="") + + + ################################################### + ### chunk number 20: FigRutClu2a + ################################################### + trx2 <- cutree(hc,k=5) + cols <- colorsForOutliers1(factor(trx2)) + plot(acomp(x),col=takeIf(out,cols[as.numeric(trx2)],"gray"), + pch=takeIf(out,as.numeric(trx2)+1,"."),center=TRUE) + + + ################################################### + ### chunk number 21: FigRutileGlobal2 + ################################################### + cl2<- OutlierClassifier1(comp,alpha=0.05,type="best") + par(mfrow=c(1,2)) + trxext1 = as.integer(cl2)*0+1 + names(trxext1)=row.names(comp) + trxext1[names(trx1)]=trx1+1 + cols <- colorsForOutliers1(cl2) + barplot(table(cl2,trxext1),col=cols,main="") + legend(x=3,y=120, legend=levels(cl2),fill=cols) + trxext2 = as.integer(cl2)*0+1 + names(trxext2)=row.names(comp) + trxext2[names(trx2)]=trx2+1 + cols <- colorsForOutliers1(cl2) + barplot(table(cl2,trxext2),col=cols,main="") + # legend(x=0,y=1, + # legend=levels(cl2),col=colcode,pch=pchcode,horizontal=TRUE, + # ncol=length(levels(myCls))) + + + ################################################### + ### chunk number 22: FigRutileGlobal2a + ################################################### + outlierplot(comp,type="biplot",class.type="best",main="",pch=cl$types, + col=colorsForOutliers1) + + + ################################################### + ### chunk number 23: FigRutileRobBiplot + ################################################### + colcode <- colorsForOutliers1(cl2) + pchcode <- pchForOutliers1(cl2) + pchcode[1]='\020' + pch <- pchcode[as.integer(cl2)] + xcol <- colcode[as.integer(cl2)] + + coloredBiplot(xrf=svd(var(comp,robust=TRUE)),xcol=xcol,pc.biplot=FALSE,pch=pch) + var(comp,robust=TRUE,giveCenter=TRUE) + + ################################################### + ### chunk number 24: FigRutileSubcomp + ################################################### + par(mfrow=c(2,2),oma=c(0,0,0,0)) + + xcol = ifelse(xcol=="gray40","white",xcol) + plot(acomp(comp[,1:3]),bg=xcol,pch=c(1:3,21,5,24)[as.integer(location)], + center=TRUE,cex=1.25) + legend(x=0,y=1,legend=levels(location),pch=c(1:3,21,5,24)) + + plot(acomp(comp[,1:3]),bg=xcol,pch=c(21,24,5)[as.integer(gsize)],center=TRUE,cex=1.25) + legend(x=0,y=1,legend=levels(gsize),pch=c(21,24,5)) + + options(robust=TRUE) + plot(acomp(comp[,1:3]),bg=xcol,pch=c(1:3,21,5,24)[as.integer(location)], + center=TRUE,cex=1.25) + legend(x=0,y=1,legend=levels(location),pch=c(1:3,21,5,24)) + + plot(acomp(comp[,1:3]),bg=xcol,pch=c(21,24,5)[as.integer(gsize)],center=TRUE,cex=1.25) + legend(x=0,y=1,legend=levels(gsize),pch=c(21,24,5)) + options(robust=FALSE) + + ############# End of rutile figures + } + + ################################################### + ### chunk number 25: Bsp eval=FALSE + ################################################### + ## outlierplot.acomp(comp, type, class.type, ...) + + + ################################################### + ### chunk number 26: FigXX2 + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + tmp<-mapply(function(x,y) { + cl <- ClusterFinder1(x,sigma=0.4,radius=1) + plot(x,col=as.numeric(cl$types),pch=as.numeric(cl$types)) + legend(1,1,legend=levels(cl$types),xjust=1,col=1:length(levels(cl$types)),pch=1:length(levels(cl$types))) + title(y) + },datas,names(datas)) + tmp<-par(opar) + + + ################################################### + ### chunk number 27: FigXX4 + ################################################### + opar<-par(mfrow=c(2,3),pch=19,mar=c(3,2,2,1)) + tmp<-mapply(function(x,y) { + cl <- ClusterFinder1(x,sigma=0.4,radius=1) + cl2<- OutlierClassifier1(x,alpha=0.05,type="best") + cols <- 1:length(levels(cl2)) + barplot(table(cl2,cl$types),col=cols,main=paste("Groups in",y),ylim=c(0,100)) + if( length(levels(cl$types))>1 ) + legend(par("usr")[2],100,xjust=1,levels(cl2),fill=cols) + },datas,names(datas)) + tmp<-par(opar) + + + ################################################### + ### chunk number 28: Bsp1 eval=FALSE + ################################################### + ## require(rrcov) + ## require(compositions) + ## source("FunctionOutliers.R") + ## # covariance matrix + ## A <- matrix(c(0.1,0.2,0.3,0.1),nrow=2) + ## Mvar <- 0.1*ilrvar2clr(A%*%t(A)) + ## # mean composition + ## Mcenter <- acomp(c(1,2,1)) + ## # basic simulation + ## typicalData <- rnorm.acomp(100,Mcenter,Mvar) # main population + ## colnames(typicalData)<-c("A","B","C") + ## + ## # data1: without outliers + ## data1 <- acomp(rnorm.acomp(100,Mcenter,Mvar)) + ## colnames(data1)<-colnames(typicalData) + ## + ## # data2: with 10% of data with an error in component A + ## data2 <- acomp( rbind( typicalData + + ## rbinom(100,1,p=0.1)*rnorm(100)*acomp(c(4,1,1)) ) ) + ## + ## # data3: with an erratic outlier + ## data3 <- acomp(rbind(typicalData,acomp(c(0.5,1.5,2)))) + ## + ## # data4: with heavy tails (Cauchy type) + ## tmp<-set.seed(30) + ## rcauchy.acomp <- function (n, mean, var){ + ## D <- gsi.getD(mean)-1 + ## perturbe( + ## ilrInv( + ## matrix(rnorm(n*D)/rep(rnorm(n),D), ncol = D) %*% chol(clrvar2ilr(var)) + ## ), mean) + ## } + ## data4 <- acomp(rcauchy.acomp(100,acomp(c(1,2,1)),Mvar/4)) + ## colnames(data4)<-colnames(typicalData) + ## + ## # data5: with an additive pollution through [A,B,C]=c(0.1,1,2) + ## data5 <- acomp( rbind( unclass(typicalData)+ + ## outer(rbinom(100,1,p=0.1)*runif(100),c(0.1,1,2)) ) ) + ## + ## # data6: with two subgroups: typicalData, + ## # and a newly generated one, around [A,B,C]=c(4,4,1) + ## data6 <- acomp( rbind( + ## typicalData, + ## rnorm.acomp(20,acomp(c(4,4,1)),Mvar) ) ) + + if( !extensiveCheck ) + try(save(file=simStore,list=objects(gsi.pStore),envir=gsi.pStore)) + } > > proc.time() user system elapsed 0.50 0.01 0.50