context("fsummarise and fmutate") expect_equal(1, 1) if(requireNamespace("magrittr", quietly = TRUE) && requireNamespace("dplyr", quietly = TRUE)) { library(magrittr) bmean <- base::mean bsum <- base::sum bsd <- stats::sd bmin <- base::min bmax <- base::max NCRAN <- identical(Sys.getenv("NCRAN"), "TRUE") mtc <- dplyr::as_tibble(mtcars) gmtc <- dplyr::group_by(mtc, cyl, vs, am) expect_equal(gsplit(mtcars$mpg, GRP(gmtc), TRUE), split(mtcars$mpg, as_factor_GRP(GRP(gmtc)))) if(NCRAN) { test_that("fsummarise works like dplyr::summarise for tagged vector expressions", { # Simple computations expect_equal(smr(mtc, mu = bmean(mpg), sigma = bsd(mpg)), dplyr::summarise(mtc, mu = bmean(mpg), sigma = bsd(mpg))) # TODO: Could expand like this as well... but who needs this? # expect_false(all_obj_equal(smr(mtc, mu = bmean(mpg), sigma = bsd(mpg), q = quantile(mpg)), # dplyr::summarise(mtc, mu = bmean(mpg), sigma = bsd(mpg), q = quantile(mpg)))) expect_equal(smr(mtc, mu = bmean(mpg) + bsd(mpg)), dplyr::summarise(mtc, mu = bmean(mpg) + bsd(mpg))) expect_equal(smr(mtc, mu = bmean(mpg) + 3), dplyr::summarise(mtc, mu = bmean(mpg) + 3)) q <- 5 expect_equal(smr(mtc, mu = bmean(mpg) + q), dplyr::summarise(mtc, mu = bmean(mpg) + q)) v <- mtcars$disp expect_equal(smr(mtc, mu = bmean(mpg) + bmean(v)), dplyr::summarise(mtc, mu = bmean(mpg) + bmean(v))) # Grouped computations expect_equal(smr(gmtc, mpg = fmean(mpg)), dplyr::summarise(gmtc, mpg = bmean(mpg), .groups = "drop")) expect_equal(smr(gmtc, mpg = bmean(mpg)), dplyr::summarise(gmtc, mpg = bmean(mpg), .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg), carb = fmax(carb)), dplyr::summarise(gmtc, mpg = bmean(mpg), carb = bmax(carb), .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg), carb = bmax(carb)), dplyr::summarise(gmtc, mpg = bmean(mpg), carb = bmax(carb), .groups = "drop")) expect_equal(smr(gmtc, mpg = bmean(mpg), carb = bmax(carb)), dplyr::summarise(gmtc, mpg = bmean(mpg), carb = bmax(carb), .groups = "drop")) expect_equal(smr(gmtc, mpg = bmean(mpg), carb = fmax(carb)), dplyr::summarise(gmtc, mpg = bmean(mpg), carb = bmax(carb), .groups = "drop")) expect_equal(fsummarise(gmtc, mpg = bmean(mpg), carb = fmax(carb), keep.group_vars = FALSE), fsummarise(gmtc, mpg = bmean(mpg), carb = fmax(carb)) %>% slt(-cyl,-vs,-am)) # Multi-return values expect_equal(smr(gmtc, mpg = quantile(mpg)), dplyr::summarise(gmtc, mpg = quantile(mpg), .groups = "drop") %>% tfm(mpg = unname(mpg))) # More complex expressions expect_equal(smr(gmtc, mpg = bmean(mpg) + 1), dplyr::summarise(gmtc, mpg = bmean(mpg) + 1, .groups = "drop")) expect_equal(smr(gmtc, mpg = bmean(mpg) + q), dplyr::summarise(gmtc, mpg = bmean(mpg) + q, .groups = "drop")) expect_equal(smr(gmtc, mpg = quantile(mpg) + q), dplyr::summarise(gmtc, mpg = quantile(mpg) + q, .groups = "drop") %>% tfm(mpg = unname(mpg))) expect_equal(smr(gmtc, mpg = bmean(mpg) + bmax(v)), dplyr::summarise(gmtc, mpg = bmean(mpg) + bmax(v), .groups = "drop")) expect_equal(smr(gmtc, mpg = quantile(mpg) + bmax(v)), dplyr::summarise(gmtc, mpg = quantile(mpg) + bmax(v), .groups = "drop") %>% tfm(mpg = unname(mpg))) expect_equal(smr(gmtc, mpg = bmean(log(mpg))), dplyr::summarise(gmtc, mpg = bmean(log(mpg)), .groups = "drop")) expect_equal(smr(gmtc, mpg = bmean(log(mpg)) + bmax(qsec)), dplyr::summarise(gmtc, mpg = bmean(log(mpg)) + bmax(qsec), .groups = "drop")) expect_equal(smr(gmtc, mpg = quantile(mpg) + bmax(qsec)), dplyr::summarise(gmtc, mpg = quantile(mpg) + bmax(qsec), .groups = "drop") %>% tfm(mpg = unname(mpg))) expect_equal(smr(gmtc, mpg = fmean(log(mpg)) + fmax(qsec)), dplyr::summarise(gmtc, mpg = bmean(log(mpg)) + bmax(qsec), .groups = "drop")) expect_false(all_obj_equal(smr(gmtc, mpg = fmean(log(mpg)) + bmax(qsec)), dplyr::summarise(gmtc, mpg = bmean(log(mpg)) + bmax(qsec), .groups = "drop"))) # Testing expressions turned into functions: mid_fun <- function(x) (bmin(x) + bmax(x)) / 2 expect_true(all_obj_equal(smr(gmtc, mid_mpg = (bmin(mpg) + bmax(mpg)) / 2), smr(gmtc, mid_mpg = (fmin(mpg) + fmax(mpg)) / 2), smr(gmtc, mid_mpg = mid_fun(mpg)), dplyr::summarise(gmtc, mid_mpg = (bmin(mpg) + bmax(mpg)) / 2, .groups = "drop"))) # Adding global variable: expect_true(all_obj_equal(smr(gmtc, mid_mpg = (bmin(mpg) + bmax(mpg)) / 2 + q), smr(gmtc, mid_mpg = (fmin(mpg) + fmax(mpg)) / 2 + q), smr(gmtc, mid_mpg = mid_fun(mpg) + q), dplyr::summarise(gmtc, mid_mpg = (bmin(mpg) + bmax(mpg)) / 2 + q, .groups = "drop"))) # Weighted computations expect_equal(smr(gmtc, mpg = weighted.mean(mpg, wt)), dplyr::summarise(gmtc, mpg = weighted.mean(mpg, wt), .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg, wt)), dplyr::summarise(gmtc, mpg = fmean(mpg, w = wt), .groups = "drop")) expect_equal(smr(gmtc, mpg = weighted.mean(mpg, wt) + 5.5), dplyr::summarise(gmtc, mpg = weighted.mean(mpg, wt) + 5.5, .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg, wt) + 5.5), dplyr::summarise(gmtc, mpg = fmean(mpg, w = wt) + 5.5, .groups = "drop")) expect_equal(smr(gmtc, mpg = weighted.mean(mpg, wt) + q), dplyr::summarise(gmtc, mpg = weighted.mean(mpg, wt) + q, .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg, wt) + q), dplyr::summarise(gmtc, mpg = fmean(mpg, w = wt) + q, .groups = "drop")) expect_equal(smr(gmtc, mpg = weighted.mean(mpg, wt) + bmax(v)), dplyr::summarise(gmtc, mpg = weighted.mean(mpg, wt) + bmax(v), .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg, wt) + bmax(v)), dplyr::summarise(gmtc, mpg = fmean(mpg, w = wt) + bmax(v), .groups = "drop")) expect_equal(smr(gmtc, mpg = weighted.mean(mpg, wt) + bmax(qsec)), dplyr::summarise(gmtc, mpg = weighted.mean(mpg, wt) + bmax(qsec), .groups = "drop")) expect_equal(smr(gmtc, mpg = fmean(mpg, wt) + fmax(qsec)), dplyr::summarise(gmtc, mpg = fmean(mpg, w = wt) + bmax(qsec), .groups = "drop")) expect_equal(smr(gmtc, mpg = quantile(mpg) + weighted.mean(mpg, wt)), dplyr::summarise(gmtc, mpg = quantile(mpg) + weighted.mean(mpg, wt), .groups = "drop") %>% tfm(mpg = unname(mpg))) expect_warning(smr(gmtc, mpg = quantile(mpg) + fmean(mpg, wt))) }) } wld <- dplyr::as_tibble(wlddev) gwld <- dplyr::group_by(wlddev, iso3c) if(NCRAN) { test_that("fsummarise works like dplyr::summarise with across and simple usage", { # Simple usage expect_true(all_obj_equal(fsummarise(mtc, across(cyl:drat, bsum)), fsummarise(mtc, across(cyl:drat, fsum)), dplyr::summarise(mtc, dplyr::across(cyl:drat, bsum)))) expect_true(all_obj_equal(fsummarise(mtc, across(5:8, bsum)), fsummarise(mtc, across(5:8, fsum)), dplyr::summarise(mtc, dplyr::across(5:8, bsum)))) expect_true(all_obj_equal(fsummarise(mtc, across(-(5:8), bsum)), fsummarise(mtc, across(-(5:8), fsum, .apply = FALSE)), dplyr::summarise(mtc, dplyr::across(-(5:8), bsum)))) expect_true(all_obj_equal(fsummarise(wld, across(is.numeric, bsum, na.rm = TRUE)), fsummarise(wld, across(is.numeric, fsum)) %>% dapply(unattrib, drop = FALSE), dplyr::summarise(wld, dplyr::across(where(is.numeric), bsum, na.rm = TRUE)))) expect_true(all_obj_equal(fsummarise(mtc, across(NULL, bsum, na.rm = TRUE)), fsummarise(mtc, across(NULL, fsum)), dplyr::summarise(mtc, dplyr::across(everything(), bsum, na.rm = TRUE)))) expect_equal(fsummarise(mtc, across(cyl:vs, bsum)), fsummarise(mtc, cyl = bsum(cyl), across(disp:qsec, fsum), vs = fsum(vs))) # Simple programming use vlist <- list(mtc %>% fselect(cyl:drat, return = "names"), 5:8, NULL) # -(5:8), is.numeric for(i in seq_along(vlist)) { expect_true(all_obj_equal(fsummarise(mtc, across(vlist[[i]], bsum)), fsummarise(mtc, across(vlist[[i]], fsum)), dplyr::summarise(mtc, dplyr::across(if(is.null(vlist[[i]])) everything() else vlist[[i]], bsum)))) v <- vlist[[i]] expect_true(all_obj_equal(fsummarise(mtc, across(v, bsum)), fsummarise(mtc, across(v, fsum)), dplyr::summarise(mtc, dplyr::across(if(is.null(v)) everything() else v, bsum)))) } # Simple usage and multiple functions expect_true(all_obj_equal(fsummarise(mtc, across(cyl:drat, list(bmean, bsum))), fsummarise(mtc, across(cyl:drat, list(bmean = fmean, bsum = fsum))), dplyr::summarise(mtc, dplyr::across(cyl:drat, list(bmean = bmean, bsum = bsum))))) expect_true(all_obj_equal(fsummarise(mtc, across(NULL, list(bmean, bsum))), fsummarise(mtc, across(NULL, list(bmean = fmean, bsum = fsum))), dplyr::summarise(mtc, dplyr::across(everything(), list(bmean = bmean, bsum = bsum))))) # Passing additional arguments expect_true(all_obj_equal(fsummarise(mtc, across(cyl:drat, bsum, na.rm = FALSE)), fsummarise(mtc, across(cyl:drat, fsum, na.rm = FALSE)), dplyr::summarise(mtc, dplyr::across(cyl:drat, bsum, na.rm = FALSE)))) expect_true(all_obj_equal(fsummarise(mtc, across(cyl:drat, weighted.mean, w = wt)), fsummarise(mtc, across(cyl:drat, fmean, w = wt)), dplyr::summarise(mtc, dplyr::across(cyl:drat, weighted.mean, w = wt)))) expect_true(all_obj_equal(fsummarise(mtc, across(cyl:drat, list(mean = weighted.mean, sum = fsum), w = wt)), fsummarise(mtc, across(cyl:drat, list(mean = fmean, sum = fsum), w = wt)), dplyr::summarise(mtc, dplyr::across(cyl:drat, list(mean = weighted.mean, sum = fsum), w = wt)))) # Simple programming use flist <- list(bsum, list(bmean = bmean, bsum = bsum), list(bmean, bsum)) # c("bmean", "bsum"), c(mean = "fmean", sum = "fsum") for(i in seq_along(flist)) { expect_equal(fsummarise(mtc, across(cyl:drat, flist[[i]])), dplyr::summarise(mtc, dplyr::across(cyl:drat, flist[[i]]))) f <- flist[[i]] expect_equal(fsummarise(mtc, across(cyl:drat, f)), dplyr::summarise(mtc, dplyr::across(cyl:drat, f))) } }) test_that("fsummarise works like dplyr::summarise with across and grouped usage", { # Simple usage expect_true(all_obj_equal(fsummarise(gmtc, across(hp:drat, bsum)), fsummarise(gmtc, across(hp:drat, fsum)), dplyr::summarise(gmtc, dplyr::across(hp:drat, bsum), .groups = "drop"))) expect_true(all_obj_equal(fsummarise(gmtc, across(5:7, bsum)), fsummarise(gmtc, across(5:7, fsum)), dplyr::summarise(gmtc, dplyr::across(4:6, bsum), .groups = "drop"))) expect_true(all_obj_equal(fsummarise(gwld, across(is.numeric, bsum, na.rm = TRUE)) %>% setLabels(NULL), fsummarise(gwld, across(is.numeric, fsum)) %>% replace_NA() %>% setLabels(NULL), dplyr::summarise(gwld, dplyr::across(where(is.numeric), bsum, na.rm = TRUE)))) expect_true(all_obj_equal(fsummarise(gmtc, across(NULL, bsum, na.rm = TRUE)) %>% setLabels(NULL), fsummarise(gmtc, across(NULL, fsum)) %>% setLabels(NULL), dplyr::summarise(gmtc, dplyr::across(everything(), bsum, na.rm = TRUE), .groups = "drop"))) expect_equal(fsummarise(gmtc, across(NULL, bsum, na.rm = TRUE), keep.group_vars = FALSE), fsummarise(gmtc, across(NULL, bsum, na.rm = TRUE)) %>% slt(-cyl,-vs,-am)) expect_equal(fsummarise(gmtc, across(cyl:vs, bsum)), fsummarise(gmtc, cyl = bsum(cyl), across(disp:qsec, fsum), vs = fsum(vs))) # Simple programming use vlist <- list(mtc %>% fselect(hp:drat, return = "names"), NULL) # -(5:8), is.numeric for(i in seq_along(vlist)) { expect_true(all_obj_equal(fsummarise(gmtc, across(vlist[[i]], bsum)), fsummarise(gmtc, across(vlist[[i]], fsum)), dplyr::summarise(gmtc, dplyr::across(if(is.null(vlist[[i]])) everything() else vlist[[i]], bsum), .groups = "drop"))) v <- vlist[[i]] expect_true(all_obj_equal(fsummarise(gmtc, across(v, bsum)), fsummarise(gmtc, across(v, fsum)), dplyr::summarise(gmtc, dplyr::across(if(is.null(v)) everything() else v, bsum), .groups = "drop"))) } # Simple usage and multiple functions expect_true(all_obj_equal(fsummarise(gmtc, across(hp:drat, list(bmean, bsum))), fsummarise(gmtc, across(hp:drat, list(bmean = fmean, bsum = fsum))), dplyr::summarise(gmtc, dplyr::across(hp:drat, list(bmean = bmean, bsum = bsum)), .groups = "drop"))) expect_true(all_obj_equal(fsummarise(gmtc, across(NULL, list(bmean, bsum))), fsummarise(gmtc, across(NULL, list(bmean = fmean, bsum = fsum))), dplyr::summarise(gmtc, dplyr::across(everything(), list(bmean = bmean, bsum = bsum)), .groups = "drop"))) # Passing additional arguments expect_true(all_obj_equal(fsummarise(gwld, across(c("PCGDP", "LIFEEX"), bsum, na.rm = TRUE)) %>% setLabels(NULL), fsummarise(gwld, across(c("PCGDP", "LIFEEX"), fsum, na.rm = TRUE)) %>% setLabels(NULL) %>% replace_NA(), dplyr::summarise(gwld, dplyr::across(c("PCGDP", "LIFEEX"), bsum, na.rm = TRUE), .groups = "drop"))) expect_true(all_obj_equal(fsummarise(gmtc, across(hp:drat, weighted.mean, w = wt)), fsummarise(gmtc, across(hp:drat, fmean, w = wt)), dplyr::summarise(gmtc, dplyr::across(hp:drat, weighted.mean, w = wt), .groups = "drop"))) expect_equal(fsummarise(gmtc, across(cyl:vs, weighted.mean, w = wt)), fsummarise(gmtc, cyl = weighted.mean(cyl, wt), across(disp:qsec, fmean, w = wt), vs = fmean(vs, wt))) expect_true(all_obj_equal(fsummarise(gmtc, across(hp:drat, list(mean = weighted.mean, sum = fsum), w = wt)), fsummarise(gmtc, across(hp:drat, list(mean = fmean, sum = fsum), w = wt)), dplyr::summarise(gmtc, dplyr::across(hp:drat, list(mean = weighted.mean, sum = fsum), w = wt), .groups = "drop"))) # Simple programming use flist <- list(bsum, list(bmean = bmean, bsum = bsum), list(bmean, bsum)) # c("bmean", "bsum"), c(mean = "fmean", sum = "fsum") for(i in seq_along(flist)) { expect_equal(fsummarise(gmtc, across(hp:drat, flist[[i]])), dplyr::summarise(gmtc, dplyr::across(hp:drat, flist[[i]]), .groups = "drop")) f <- flist[[i]] expect_equal(fsummarise(gmtc, across(hp:drat, f)), dplyr::summarise(gmtc, dplyr::across(hp:drat, f), .groups = "drop")) } }) } test_that("fsummarise miscellaneous things", { expect_equal(smr(gmtc, acr(disp:hp, c("bmean", "bsd"))), fsummarise(gmtc, across(disp:hp, c("bmean", "bsd"), .transpose = FALSE)) %>% colorderv(c(4,6,5,7), pos = "exchange")) expect_identical(names(smr(gmtc, acr(disp:hp, fmean, .names = TRUE)))[4:5], c("disp_fmean", "hp_fmean")) expect_identical(names(smr(gmtc, acr(disp:hp, bmean, .names = TRUE)))[4:5], c("disp_bmean", "hp_bmean")) pwcorDF <- function(x, w = NULL) qDF(pwcor(x, w = w), "var") expect_equal( mtcars %>% gby(cyl) %>% smr(acr(disp:hp, pwcorDF, .apply = FALSE)), rsplit(mtcars, disp + hp ~ cyl) %>% lapply(pwcorDF) %>% unlist2d("cyl", "var") %>% tfm(cyl = as.numeric(cyl)) ) if(identical(Sys.getenv("LOCAL"), "TRUE")) # No tests depending on suggested package (except for major ones). expect_equal( mtcars %>% gby(cyl) %>% smr(acr(disp:hp, pwcorDF, w = wt, .apply = FALSE)), rsplit(mtcars, disp + hp + wt ~ cyl) %>% lapply(function(x) pwcorDF(gv(x, 1:2), w = x$wt)) %>% unlist2d("cyl", "var") %>% tfm(cyl = as.numeric(cyl)) ) if(requireNamespace("data.table", quietly = TRUE)) { lmest <- function(x) list(Mods = list(lm(disp~., x))) expect_equal( qDT(mtcars) %>% gby(cyl) %>% smr(acr(disp:hp, lmest, .apply = FALSE)), qDT(mtcars) %>% rsplit(disp + hp ~ cyl) %>% lapply(lmest) %>% data.table::rbindlist(idcol = "cyl") %>% tfm(cyl = as.numeric(cyl)) ) } }) if(NCRAN) { test_that("fmutate works as intended for simple usage", { expect_equal(fmutate(mtc, bla = 1), dplyr::mutate(mtc, bla = 1)) expect_equal(fmutate(mtc, mu = bmean(mpg)), dplyr::mutate(mtc, mu = bmean(mpg))) expect_equal(fmutate(mtc, mu = bmean(mpg), mpg = NULL), dplyr::mutate(mtc, mu = bmean(mpg), mpg = NULL)) expect_equal(fmutate(mtc, mu = bmean(mpg), dmu = mpg - mu), dplyr::mutate(mtc, mu = bmean(mpg), dmu = mpg - mu)) expect_equal(fmutate(mtc, mu = log(mpg)), dplyr::mutate(mtc, mu = log(mpg))) expect_equal(fmutate(mtc, mu = log(mpg), dmu = mpg - mu), dplyr::mutate(mtc, mu = log(mpg), dmu = mpg - mu)) expect_true(all_obj_equal( dplyr::mutate(mtc, dmu = mpg - bmean(mpg)), fmutate(mtc, dmu = mpg - bmean(mpg)), fmutate(mtc, dmu = mpg - fmean(mpg)), fmutate(mtc, dmu = fmean(mpg, TRA = "-")), fmutate(mtc, dmu = fwithin(mpg)) )) # With groups: expect_equal(fmutate(gmtc, bla = 1), dplyr::mutate(gmtc, bla = 1)) expect_equal(fmutate(gmtc, mu = bmean(mpg)), dplyr::mutate(gmtc, mu = bmean(mpg))) expect_equal(fmutate(gmtc, mu = bmean(mpg), mpg = NULL), dplyr::mutate(gmtc, mu = bmean(mpg), mpg = NULL)) expect_equal(fmutate(gmtc, mu = bmean(mpg), dmu = mpg - mu), dplyr::mutate(gmtc, mu = bmean(mpg), dmu = mpg - mu)) expect_equal(fmutate(gmtc, mu = log(mpg)), dplyr::mutate(gmtc, mu = log(mpg))) expect_equal(fmutate(gmtc, mu = log(mpg), dmu = mpg - mu), dplyr::mutate(gmtc, mu = log(mpg), dmu = mpg - mu)) expect_true(all_obj_equal( dplyr::mutate(gmtc, dmu = mpg - bmean(mpg)), fmutate(gmtc, dmu = mpg - bmean(mpg)), fmutate(gmtc, dmu = mpg - fmean(mpg)), fmutate(gmtc, dmu = fmean(mpg, TRA = "-")), fmutate(gmtc, dmu = fwithin(mpg)) )) }) } test_that("fmutate with across works like ftransformv", { expect_true(all_obj_equal( ftransformv(mtcars, cyl:vs, fwithin, w = wt, apply = TRUE), ftransformv(mtcars, cyl:vs, fwithin, w = wt, apply = FALSE), fmutate(mtcars, across(cyl:vs, fwithin, w = wt, .apply = TRUE)), fmutate(mtcars, across(cyl:vs, fwithin, w = wt, .apply = FALSE)) # fmutate(mtcars, fwithin(.data, w = .data[["wt"]]), .cols = slt(., cyl:vs, return = "names")) )) expect_true(all_obj_equal( ftransformv(mtcars, cyl:vs, fwithin, g = list(cyl, vs, am), apply = TRUE) %>% setRownames(), ftransformv(mtcars, cyl:vs, fwithin, g = list(cyl, vs, am), apply = FALSE) %>% setRownames(), fmutate(gmtc, across(cyl:vs, fwithin, .apply = TRUE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fwithin, .apply = FALSE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fmean, TRA = "-", .apply = TRUE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fmean, TRA = "-", .apply = FALSE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, function(x) x - bmean(x), .apply = TRUE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, function(x) lapply(x, function(y) y - bmean(y)), .apply = FALSE)) %>% qDF(), gmtc %>% fmutate(fwithin(.data), .cols = slt(., cyl:vs, return = "names")) %>% qDF() )) expect_true(all_obj_equal( ftransformv(mtcars, cyl:vs, fwithin, g = list(cyl, vs, am), w = wt, apply = TRUE) %>% setRownames(), ftransformv(mtcars, cyl:vs, fwithin, g = list(cyl, vs, am), w = wt, apply = FALSE) %>% setRownames(), fmutate(gmtc, across(cyl:vs, fwithin, w = wt, .apply = TRUE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fwithin, w = wt, .apply = FALSE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fmean, TRA = "-", w = wt, .apply = TRUE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, fmean, TRA = "-", w = wt, .apply = FALSE)) %>% qDF(), fmutate(gmtc, across(cyl:vs, function(x, w) x - weighted.mean(x, w), w = wt, .apply = TRUE)) %>% qDF() )) }) test_that("fmutate with across reorders correctly", { for(i in seq_col(wlddev)) { gdf <- fgroup_by(wlddev, i) expect_true(all_identical( wlddev, fungroup(fmutate(gdf, across(c(PCGDP, LIFEEX), identity))), fungroup(fmutate(gdf, across(.fns = identity))), fungroup(fmutate(gdf, list(PCGDP = PCGDP, LIFEEX = LIFEEX))), fungroup(fmutate(gdf, (.data), .cols = .c(PCGDP, LIFEEX))), fungroup(fmutate(gdf, (.data))) )) } }) test_that("fsummarise and fmutate with arbitrary expressions", { expect_true( all_obj_equal( fsummarise(gmtc, qDF(cor(cbind(mpg, wt, hp))), mpg_qs = quantile(mpg, c(0.25, 0.5, 0.75))), fsummarise(gmtc, acr(c(mpg, wt, hp), function(x) qDF(cor(x)), .apply = FALSE), mpg_qs = quantile(mpg, c(0.25, 0.5, 0.75))), fsummarise(gmtc, qDF(cor(.data)), .cols = .c(mpg, wt, hp), mpg_qs = quantile(mpg, c(0.25, 0.5, 0.75))), fsummarise(gmtc, qDF(cor(slt(.data, mpg, wt, hp))), mpg_qs = quantile(mpg, c(0.25, 0.5, 0.75)))) ) expect_true( all_obj_equal( fmutate(gmtc, fscale(list(mpg = mpg, wt = wt, hp = hp)), bla = 1, mu = fmean(mpg), su = sum(hp)), fmutate(gmtc, acr(c(mpg, wt, hp), fscale), bla = 1, mu = fmean(mpg), su = sum(hp)), fmutate(gmtc, acr(c(mpg, wt, hp), function(x) fscale(x), .apply = FALSE), bla = 1, mu = fmean(mpg), su = sum(hp)), fmutate(gmtc, fscale(.data), .cols = .c(mpg, wt, hp), bla = 1, mu = fmean(mpg), su = sum(hp)), fmutate(gmtc, fscale(slt(.data, mpg, wt, hp)), bla = 1, mu = fmean(mpg), su = sum(hp))) ) expect_equal(fmutate(gmtc, acr(NULL, fscale)), fmutate(gmtc, fscale(.data))) expect_equal(fmutate(gmtc, acr(mpg:carb, fscale)), fmutate(gmtc, fscale(.data), .cols = seq_col(gmtc))) }) if(NCRAN) { test_that("fmutate miscellaneous", { expect_true(length(fmutate(mtcars, across(cyl:vs, W, w = wt, .names = NULL))) > 15) expect_true(length(fmutate(mtcars, across(cyl:vs, list(D, W), .names = FALSE, .transpose = FALSE))) > 15) expect_equal( fmutate(mtcars, across(cyl:vs, L, stubs = FALSE)), fmutate(mtcars, across(cyl:vs, flag)) ) expect_true(length(fmutate(mtcars, across(cyl:vs, L))) > length(fmutate(mtcars, across(cyl:vs, flag)))) expect_equal( fmutate(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "used"), dplyr::mutate(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "used") ) expect_equal( fmutate(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "unused"), dplyr::mutate(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "unused") ) expect_equal( fmutate(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "none"), dplyr::transmute(mtcars, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb) ) expect_identical(names(fmutate(mtcars, a = mpg, b = a, c = cyl, hp = wt, .keep = "unused")), c(setdiff(names(mtcars), .c(mpg, cyl, wt)), letters[1:3])) expect_identical(names(fmutate(mtcars, a = mpg, b = a, c = cyl, hp = wt, .keep = "none")), c("a", "b", "c", "hp")) expect_equal( fmutate(gmtc, a = fmax(mpg), b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "used"), dplyr::mutate(gmtc, a = bmax(mpg), b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "used") ) expect_equal( fmutate(gmtc, a = fmax(mpg), b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "unused"), dplyr::mutate(gmtc, a = bmax(mpg), b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "unused") ) expect_equal( fmutate(gmtc, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, .keep = "none"), dplyr::transmute(gmtc, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb) ) # Inconsistent with the above and also inefficient... # expect_equal( # fmutate(gmtc, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, cyl = cyl, .keep = "none"), # dplyr::mutate(gmtc, a = mpg, b = a + hp + disp, c = cyl, hp = wt + carb, cyl = cyl, .keep = "none") # ) expect_equal(flast(names(fmutate(mtcars, across(cyl:vs, function(x) list(ps = kit::psum(x)), .apply = FALSE)))), "ps") expect_equal( fmutate(mtcars, across(cyl:vs, data.table::shift, .apply = FALSE, .names = FALSE)), fmutate(mtcars, across(cyl:vs, data.table::shift)) ) # Testing expressions turned into functions: bcumsum = base::cumsum lorentz_fun <- function(x) bcumsum(x) / bsum(x) gmtc = mtc %>% roworder(mpg) %>% dplyr::group_by(cyl, vs, am) expect_true(all_obj_equal(mtt(gmtc, lorentz_mpg = bcumsum(mpg) / bsum(mpg)), mtt(gmtc, lorentz_mpg = lorentz_fun(mpg)), mtt(gmtc, lorentz_mpg = fcumsum(mpg) / fsum(mpg)), # doesn't work because of global sorting... dplyr::mutate(gmtc, lorentz_mpg = bcumsum(mpg) / bsum(mpg)))) # Adding global variable: q = 5 expect_true(all_obj_equal(mtt(gmtc, lorentz_mpg = bcumsum(mpg) / bsum(mpg) + q), mtt(gmtc, lorentz_mpg = lorentz_fun(mpg) + q), mtt(gmtc, lorentz_mpg = fcumsum(mpg) / fsum(mpg) + q), dplyr::mutate(gmtc, lorentz_mpg = bcumsum(mpg) / bsum(mpg) + q))) }) } test_that(".names works properly", { expect_equal( smr(gmtc, acr(c(hp, wt), list(sum, max, min))), smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = TRUE)) ) expect_equal( smr(gmtc, acr(c(hp, wt), list(sum, max, min))), smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = function(c, f) paste0(c, "_", f))) ) expect_equal( smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = "flip")), smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = function(c, f) paste0(f, "_", c))) ) expect_equal( smr(gmtc, acr(c(hp, wt), list(sum, max, min), .transpose = FALSE)), smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = function(c, f) paste0(c, "_", f), .transpose = FALSE)) ) expect_equal( smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = "flip", .transpose = FALSE)), smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = function(c, f) paste0(f, "_", c), .transpose = FALSE)) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = FALSE))), .c(cyl, vs, am, hp, hp, hp, wt, wt, wt) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), list(sum, max, min), .names = FALSE, .transpose = FALSE))), .c(cyl, vs, am, hp, wt, hp, wt, hp, wt) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), sum, .names = FALSE))), .c(cyl, vs, am, hp, wt) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), sum, .names = FALSE, .transpose = FALSE))), .c(cyl, vs, am, hp, wt) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), sum, .names = TRUE))), .c(cyl, vs, am, hp_sum, wt_sum) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), sum, .names = "flip"))), .c(cyl, vs, am, sum_hp, sum_wt) ) expect_equal( names(smr(gmtc, acr(c(hp, wt), sum, .names = "flip", .transpose = FALSE))), .c(cyl, vs, am, sum_hp, sum_wt) ) }) test_that("Warnings for unnamed scalar and vector-valued arguments passed", { tf <- function(x, ...) x expect_warning(mtt(gmtc, acr(hp:carb, tf, TRUE, wt))) expect_warning(mtt(gmtc, acr(hp:carb, tf, wt, TRUE))) expect_warning(mtt(gmtc, acr(hp:carb, tf, TRUE, wt, .apply = FALSE))) expect_warning(mtt(gmtc, acr(hp:carb, tf, wt, TRUE, .apply = FALSE))) }) if(FALSE) { fmutate(mtcars, across(cyl:vs, list(D, W), .names = TRUE, .transpose = FALSE)) %>% head(3) fmutate(mtcars, across(cyl:vs, list(D, W), .names = TRUE, .transpose = TRUE)) %>% head(3) fmutate(mtcars, across(cyl:vs, list(D, W), .names = TRUE, .apply = FALSE, .transpose = FALSE)) %>% head(3) fmutate(mtcars, across(cyl:vs, list(D, W), .names = FALSE, .apply = FALSE, .transpose = FALSE)) %>% head(3) fmutate(mtcars, across(cyl:vs, list(W, kit::psum), w = wt)) %>% head(3) fmutate(mtcars, across(cyl:vs, kit::psum)) %>% head(3) fmutate(mtcars, across(cyl:vs, identity, .apply = FALSE)) # 51 microesecond median on windows fmutate(mtcars, across(cyl:vs, identity)) # 62 microesecond median on windows fmutate(mtcars, across(cyl:vs, L)) # TODO: Test all potential issues with environemtns etc. See if there are smarter ways to # incorporate internal functions, data and objects in the global environment. } }