## For different cluster versions require(cluster) if(interactive()) print(packageDescription("cluster")) ## trivial cases should 'work': daisy(cbind(1)) (d10 <- daisy(matrix(0., 1,0))); str(d10) d01 <- daisy(matrix(0., 0,1)) if(paste(R.version$major, R.version$minor, sep=".") >= "2.1.0") print(d01) str(d01) d32 <- data.frame(eins=c("A"=1,"B"=1,"C"=1), zwei=c(2,2,2)) daisy(d32) daisy(d32, stand = TRUE) daisy(d32, type = list(ordratio="zwei")) str(d5 <- data.frame(a= c(0, 0, 0,1,0,0, 0,0,1, 0,NA), b= c(NA,0, 1,1,0,1, 0,1,0, 1,0), c= c(0, 1, 1,0,1,NA,1,0,1, 0,NA), d= c(1, 1, 0,1,0,0, 0,0,0, 1,0), e= c(1, NA,0,1,0,0, 0,0,NA,1,1))) (d0 <- daisy(d5)) (d1 <- daisy(d5, type = list(asymm = 1:5))) (d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5))) (d2.<- daisy(d5, type = list( asymm= 3:5))) stopifnot(identical(c(d2), c(d2.))) (dS <- daisy(d5, stand = TRUE))# gave error in some versions stopifnot(all.equal(as.vector(summary(c(dS), digits=9)), c(0, 2.6142638, 3.4938562, 3.2933687, 4.0591077, 5.5580177), tol = 1e-7))# 7.88e-9 d5[,4] <- 1 # binary with only one instead of two values (d0 <- daisy(d5)) (d1 <- daisy(d5, type = list(asymm = 1:5)))# 2 NAs (d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5))) (d2.<- daisy(d5, type = list( asymm= 3:5))) ## better leave away the constant variable: it has no effect: stopifnot(identical(c(d1), c(daisy(d5[,-4], type = list(asymm = 1:4))))) ###---- Trivial "binary only" matrices (not data frames) did fail: x <- matrix(0, 2, 2) dimnames(x)[[2]] <- c("A", "B")## colnames<- is missing in S+ daisy(x, type = list(symm= "B", asymm="A")) daisy(x, type = list(symm= "B"))# 0 too x2 <- x; x2[2,2] <- 1 daisy(x2, type= list(symm = "B"))# |-> 0.5 (gives 1 in S+) daisy(x2, type= list(symm = "B", asymm="A"))# 1 x3 <- x; x3[] <- diag(2) daisy(x3) # warning: both as interval scaled -> sqrt(2) daisy(x3, type= list(symm="B", asymm="A"))# 1 daisy(x3, type= list(symm =c("B","A"))) # 1, S+: sqrt(2) daisy(x3, type= list(asymm=c("B","A"))) # 1, S+ : sqrt(2) x4 <- rbind(x3, 1) daisy(x4, type= list(symm="B", asymm="A"))# 1 0.5 0.5 daisy(x4, type= list(symm=c("B","A"))) # dito; S+ : 1.41 1 1 daisy(x4, type= list(asymm=c("A","B"))) # dito, dito ## ----------- example(daisy) ----------------------- data(flower) data(agriculture) ## Example 1 in ref: ## Dissimilarities using Euclidean metric and without standardization (d.agr <- daisy(agriculture, metric = "euclidean", stand = FALSE)) (d.agr2 <- daisy(agriculture, metric = "manhattan")) ## Example 2 in ref (dfl0 <- daisy(flower)) stopifnot(identical(c(dfl0), c(daisy(flower, type = list(symm = 1)))) && identical(c(dfl0), c(daisy(flower, type = list(symm = 2)))) && identical(c(dfl0), c(daisy(flower, type = list(symm = 3)))) && identical(c(dfl0), c(daisy(flower, type = list(symm = c(1,3))))) ) (dfl1 <- daisy(flower, type = list(asymm = 3))) (dfl2 <- daisy(flower, type = list(asymm = c(1, 3), ordratio = 7))) (dfl3 <- daisy(flower, type = list(asymm = 1:3))) ## --- animals data(animals) d0 <- daisy(animals) d1 <- daisy(animals - 1, type=list(asymm=c(2,4))) (d2 <- daisy(animals - 1, type=list(symm = c(1,3,5,6), asymm=c(2,4)))) stopifnot(c(d1) == c(d2)) d3 <- daisy(2 - animals, type=list(asymm=c(2,4))) (d4 <- daisy(2 - animals, type=list(symm = c(1,3,5,6), asymm=c(2,4)))) stopifnot(c(d3) == c(d4)) pairs(cbind(d0,d2,d4), main = "Animals -- symmetric and asymm. dissimilarities")