quit("no") ## retracted metric = "gower": bad memory leakage -- see ./clara-gower_valgrind.Rout <<<<< ## Originally inspired by Kasper Fischer-Rasmussen 's clara_gower.html [html from Rmd] library(cluster) packageDescription("cluster") ## carefully getting 150 + 200 + 150 = 500 obs. from the 3 xclara clusters : str(dd <- xclara[c(1:150, 1001:1200, 2101:2250), ]) dim(dd) # 500 2 set.seed(47) cl_manhat <- clara(dd, 3, metric = "manhattan", rngR=TRUE, pamLike=TRUE, samples = 500) cl_gower <- clara(dd, 3, metric = "gower", rngR=TRUE, pamLike=TRUE, samples = 500) table(cl_manhat$cluster, cl_gower $cluster) stopifnot(exprs = { ## Apart from [188], they are the same ## usually even *including* [188], but not always ???? {FIXME ??? Random? even we use rngR?} cl_manhat$cluster[-188] == cl_gower $cluster[-188] identical(rle(unname(cl_manhat$cluster)), structure(class = "rle", list(lengths = c(29L, 1L, 120L, 80L, 1L, 119L, 150L), values = c( 1L, 2L, 1L, 2L, 1L, 2L, 3L)))) }) ## ==> no distinction between the clusters wrt Manhattan vs. Gower's distance. ## Using {cluster}'s built in tools to compute Gower's distance. cl_gower_full <- clara(dd, k = 3, metric = "gower", rngR = TRUE, pamLike = TRUE, samples = 500, sampsize = nrow(dd)) dist_cl_full <- as.matrix(cl_gower_full$diss) i_full <- rownames(dist_cl_full) d_full <- data.frame(CLARA = as.vector(cl_gower_full$diss), DAISY = as.vector(daisy(dd[i_full, ], metric = "gower"))) ## MM: instead of all this, just all.equal(d_full$CLARA, d_full$DAISY, tol=0) # "Mean relative difference: 2.17e-16" ## ... but sometimes *VERY* different (relative diff. 0.5xxx) if(FALSE) stopifnot( all.equal(d_full$CLARA, d_full$DAISY, tol = 1e-15) ) ## equal up to 15 digits! ## We can see that the distance measurements are exactly identical when the ## whole data is used in the clustering. This is because the Gower distance ## scales the distances measurements with the range of each feature. Due to ## the subsampling, approximate ranges are calculated based on each ## subsample explaining the deviations. ## MM: compare -- with pam(): dGow <- daisy(dd, metric="gower") cl_full <- clara(dd, k = 3, metric = "gower", rngR = TRUE, pamLike = TRUE, samples = 1, sampsize = nrow(dd)) all.equal(c(dGow) , c(cl_full$diss), tol=0) # "Mean relative difference: 2.171402e-16" pam_3 <- pam(dGow, k = 3, variant = "faster") ## FIXME !! -- bug !? all.equal(pam_3 $ clustering, # we would want *identical* -- bug ?? cl_full$ clustering) all.equal(c(dGow) , c(cl_full$diss), tol = 1e-15) if(FALSE) ## FIXME stopifnot(exprs = { identical(pam_3 $ clustering, cl_full$ clustering) all.equal(c(dGow) , c(cl_full$diss), tol = 1e-15) })