R Under development (unstable) (2026-01-07 r89288 ucrt) -- "Unsuffered Consequences" Copyright (C) 2026 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(clinpubr) > > test_check("clinpubr") Assuming '1' is [Event] and '0' is [non-Event] Assuming '1' is [Event] and '0' is [non-Event] Assuming '1' is [Event] and '0' is [non-Event] === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 7 potential quality issues: outliers : 5 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: mpg, hp, wt, qsec, carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 7 potential quality issues: outliers : 5 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: mpg, hp, wt, qsec, carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 4 potential quality issues: outliers : 2 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: vs, am - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 3 potential quality issues: outliers : 1 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 7 potential quality issues: outliers : 5 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: mpg, hp, wt, qsec, carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 2 potential quality issues: low_cardinality : 2 cases Recommendations: - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 3 potential quality issues: outliers : 1 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 32 rows, 11 columns Variable Types: numeric : 11 variables Found 8 potential quality issues: outliers : 6 cases low_cardinality : 2 cases Recommendations: - Review outliers in these numeric variables: mpg, hp, drat, wt, qsec, carb - Consider converting these low-cardinality variables to factor: cyl, gear === Data Overview Summary === Dataset: 12 rows, 7 columns Variable Types: numeric : 2 variables character : 4 variables logical : 1 variables Found 7 potential quality issues: numeric_as_character : 2 cases outliers : 1 cases missing_values : 2 cases near_zero_variance : 1 cases duplicate_rows : 1 cases Recommendations: - Consider converting these character variables to numeric: age, score - Review outliers in these numeric variables: income - Variables with < 50 % missing values: gender, active - consider imputation - Consider removing constant or near-zero variance variables: constant - Found 2 duplicate rows - consider removing them === Data Overview Summary === Dataset: 0 rows, 0 columns Variable Types: No major quality issues detected. === Data Overview Summary === Dataset: 10 rows, 1 columns Variable Types: numeric : 1 variables No major quality issues detected. === Data Overview Summary === Dataset: 10 rows, 2 columns Variable Types: logical : 2 variables Found 15 potential quality issues: missing_values : 2 cases duplicate_rows : 1 cases empty_columns : 2 cases empty_rows : 10 cases Recommendations: - Variables with > 50 % missing values: x, y - consider dropping or imputation strategy - Found 9 duplicate rows - consider removing them - Found completely empty columns: x, y - consider removing them - Found 10 completely empty rows at positions: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 - consider removing them === Data Overview Summary === Dataset: 10 rows, 7 columns Variable Types: numeric : 2 variables character : 2 variables logical : 1 variables date : 1 variables other : 1 variables Found 2 potential quality issues: numeric_as_character : 1 cases missing_values : 1 cases Recommendations: - Consider converting these character variables to numeric: factor_col - Variables with > 50 % missing values: logical_col - consider dropping or imputation strategy === Data Overview Summary === Dataset: 10 rows, 4 columns Variable Types: numeric : 2 variables character : 2 variables Found 3 potential quality issues: outliers : 1 cases missing_values : 1 cases near_zero_variance : 1 cases Recommendations: - Review outliers in these numeric variables: income - Variables with < 50 % missing values: gender - consider imputation - Consider removing constant or near-zero variance variables: constant === Data Overview Summary === Dataset: 11 rows, 3 columns Variable Types: numeric : 3 variables Found 2 potential quality issues: outliers : 1 cases negative_in_positive : 1 cases Recommendations: - Review outliers in these numeric variables: age - Numeric variables with mostly positive values but containing negatives: age === Data Overview Summary === Dataset: 10 rows, 3 columns Variable Types: numeric : 2 variables logical : 1 variables Found 2 potential quality issues: missing_values : 1 cases empty_columns : 1 cases Recommendations: - Variables with > 50 % missing values: empty_col - consider dropping or imputation strategy - Found completely empty columns: empty_col - consider removing them === Data Overview Summary === Dataset: 12 rows, 2 columns Variable Types: numeric : 2 variables Found 5 potential quality issues: missing_values : 2 cases duplicate_rows : 1 cases empty_rows : 2 cases Recommendations: - Variables with < 50 % missing values: id, value - consider imputation - Found 1 duplicate rows - consider removing them - Found 2 completely empty rows at positions: 11, 12 - consider removing them === Data Overview Summary === Dataset: 10 rows, 3 columns Variable Types: numeric : 1 variables date : 2 variables Found 2 potential quality issues: missing_values : 1 cases suspicious_dates : 1 cases Recommendations: - Variables with < 50 % missing values: suspicious_date - consider imputation - Review suspicious dates (year < 1910 or > current year) in: suspicious_date === Data Overview Summary === Dataset: 10 rows, 4 columns Variable Types: numeric : 3 variables character : 1 variables Found 2 potential quality issues: outliers : 1 cases low_cardinality : 1 cases Recommendations: - Review outliers in these numeric variables: score - Consider converting these low-cardinality variables to factor: education === Data Overview Summary === Dataset: 12 rows, 2 columns Variable Types: numeric : 1 variables character : 1 variables Found 1 potential quality issues: case_issues : 1 cases Recommendations: - These character variables have case inconsistency issues: city - consider standardizing to lowercase or uppercase Attaching package: 'dplyr' The following objects are masked from 'package:stats': filter, lag The following objects are masked from 'package:base': intersect, setdiff, setequal, union Loading required package: Hmisc Attaching package: 'Hmisc' The following objects are masked from 'package:dplyr': src, summarize The following object is masked from 'package:testthat': describe The following objects are masked from 'package:base': format.pval, units Taking all variables as interaction predictors Taking all variables as group variables Taking all variables as interaction predictors Taking all variables as group variables $lin $rcs $lin $rcs Ignoring unknown labels: * colour : "age" Ignoring unknown labels: * colour : "age" Ignoring unknown labels: * colour : "age" Ignoring unknown labels: * colour : "age" Taking all variables as predictors cannot process:2020-13-01 cannot process:not_a_date cannot process:123456789 Attaching package: 'rlang' The following objects are masked from 'package:withr': local_options, with_options The following object is masked from 'package:clinpubr': qq_show [ FAIL 0 | WARN 18 | SKIP 37 | PASS 492 ] ══ Skipped tests (37) ══════════════════════════════════════════════════════════ • On CRAN (37): 'test-baseline_table.R:4:1', 'test-baseline_table.R:19:1', 'test-baseline_table.R:32:1', 'test-baseline_table.R:54:1', 'test-classif_model_compare.R:30:1', 'test-cut_by.R:1:1', 'test-importance_plot.R:4:1', 'test-interactions.R:9:1', 'test-interactions.R:28:1', 'test-interactions.R:61:1', 'test-misc.R:122:1', 'test-multichoice.R:111:1', 'test-multichoice.R:117:1', 'test-multichoice.R:123:1', 'test-multichoice.R:129:1', 'test-multichoice.R:135:1', 'test-predictor_effect_plot.R:123:1', 'test-predictor_effect_plot.R:143:1', 'test-rcs_plot.R:12:1', 'test-rcs_plot.R:21:1', 'test-rcs_plot.R:36:1', 'test-rcs_plot.R:45:1', 'test-rcs_plot.R:52:1', 'test-rcs_plot.R:64:1', 'test-rcs_plot.R:73:1', 'test-rcs_plot.R:82:1', 'test-rcs_plot.R:91:1', 'test-regressions.R:15:1', 'test-regressions.R:39:1', 'test-regressions.R:60:1', 'test-regressions.R:120:1', 'test-regressions.R:139:1', 'test-regressions.R:148:1', 'test-regressions.R:186:1', 'test-time_roc.R:38:1', 'test-time_roc.R:60:1', 'test-time_roc.R:76:1' [ FAIL 0 | WARN 18 | SKIP 37 | PASS 492 ] > > proc.time() user system elapsed 59.92 3.93 64.01