library(classInt) set.seed(1) data_censored<-c(rep(0,10), rnorm(100, mean=20,sd=1),rep(26,10)) cl2<-classIntervals(data_censored, n=4, style="fixed",dataPrecision=2,fixedBreaks=c(-1,1,19,25,30)) print(cl2, unique=FALSE) print(cl2, unique=TRUE) ### example from man page classIntervals(data_censored, n=5, style="fixed", fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30)) print(classIntervals(data_censored, n=5, style="sd"), unique=FALSE) print(classIntervals(data_censored, n=5, style="sd"), unique=TRUE) print(classIntervals(data_censored, n=5, style="equal"), unique=TRUE) print(classIntervals(data_censored, n=5, style="quantile"), unique=TRUE) set.seed(1) print(classIntervals(data_censored, n=5, style="kmeans"), unique=TRUE) print(classIntervals(data_censored, n=5, style="hclust", method="complete"), unique=TRUE) print(classIntervals(data_censored, n=5, style="hclust", method="single"), unique=TRUE) print(classIntervals(data_censored, n=5, style="fisher"), unique=TRUE) print(classIntervals(data_censored, n=5, style="jenks"), unique=TRUE) print(classIntervals(data_censored, n=5, style="fixed", fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30)), unique=TRUE) print(classIntervals(data_censored, n=5, style="sd"), unique=TRUE) print(classIntervals(data_censored, n=5, style="equal"), unique=TRUE) print(classIntervals(data_censored, n=5, style="quantile"), unique=TRUE) set.seed(1) print(classIntervals(data_censored, n=5, style="kmeans"), unique=TRUE) set.seed(1) print(classIntervals(data_censored, n=5, style="kmeans", intervalClosure="right"), unique=TRUE) set.seed(1) print(classIntervals(data_censored, n=5, style="kmeans", dataPrecision=0), unique=TRUE) set.seed(1) print(classIntervals(data_censored, n=5, style="kmeans"), cutlabels=FALSE, unique=TRUE) print(classIntervals(data_censored, n=5, style="hclust", method="complete"), unique=TRUE) print(classIntervals(data_censored, n=5, style="hclust", method="single"), unique=TRUE) print(classIntervals(data_censored, n=5, style="fisher"), unique=TRUE) print(classIntervals(data_censored, n=5, style="jenks"), unique=TRUE) print(classIntervals(data_censored, style="headtails"), unique=TRUE) print(classIntervals(data_censored, style="headtails", thr = 1)) print(classIntervals(data_censored, style="headtails", thr = 0)) print(classIntervals(data_censored, style="box", iqr_mult = 0)) print(classIntervals(data_censored, style="box")) x <- c(0, 0, 0, 1, 2, 50) print(classIntervals(x, n=3, style="fisher"), unique=TRUE) print(classIntervals(x, n=3, style="jenks"), unique=TRUE) if (getRversion() > "3.5.3") { suppressWarnings(set.seed(1, sample.kind=c("Rounding"))) } else { set.seed(1) } print(classIntervals(data_censored, n=5, style="bclust", verbose=FALSE), unique=TRUE) print(classIntervals(data_censored, n=5, style="bclust", hclust.method="complete", verbose=FALSE), unique=TRUE) # the log-likelihood returns a valid logLik object. stopifnot( identical( round(logLik(classIntervals(rep(1:3, each=10), n=2, style="jenks")), 5), structure(-14.52876, df = 2, nobs = 30L, class = "logLik") ) ) # logLik for exact intervals (a single value is the unique member of an # interval) yields a likelihood of zero. stopifnot( identical( suppressWarnings(logLik(classIntervals(rep(1:3, each=10), n=3, style="jenks"))), structure(0, df = 3, nobs = 30L, class = "logLik") ) )