source("utils.R") testthat::test_that("summary", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_no_torch() set.seed(222) model = dnn(Sepal.Length~., data = datasets::iris, epoch = 2, verbose = FALSE) testthat::expect_error({summary(model)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "softmax", lr = 0.1, verbose = FALSE) testthat::expect_error({summary(model)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "binomial", lr = 0.1, verbose = TRUE) testthat::expect_error({summary(model)}, NA) iris2 = iris iris2 = iris2[iris2$Species %in% c("setosa", "versicolor"),] iris2$Species = as.integer(iris2$Species) - 1 model = dnn(Species~., data = iris2, epoch = 5, loss = "binomial", lr = 0.1, verbose = TRUE) testthat::expect_error({summary(model)}, NA) }) testthat::test_that("PDP", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_no_torch() set.seed(222) model = dnn(Sepal.Length~., data = datasets::iris, epoch = 2, verbose = FALSE, plot = FALSE) # Build and train Network suppressWarnings({ testthat::expect_error({.n = PDP(model)}, NA) testthat::expect_error({.n = PDP(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = PDP(model, ice = 10)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = 20)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "softmax", lr = 0.1, verbose = FALSE, plot = FALSE) testthat::expect_error({.n = PDP(model)}, NA) testthat::expect_error({.n = PDP(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = PDP(model, ice = TRUE)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 30)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 3)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "binomial", lr = 0.1, verbose = FALSE, plot = FALSE) testthat::expect_error({.n = PDP(model)}, NA) testthat::expect_error({.n = PDP(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = PDP(model, ice = TRUE)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 30)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 3)}, NA) iris2 = iris iris2 = iris2[iris2$Species %in% c("setosa", "versicolor"),] iris2$Species = as.integer(iris2$Species) - 1 model = dnn(Species~., data = iris2, epoch = 5, loss = "binomial", lr = 0.1, verbose = TRUE, plot = FALSE) testthat::expect_error({.n = PDP(model)}, NA) testthat::expect_error({.n = PDP(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = PDP(model, ice = TRUE)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 30)}, NA) testthat::expect_error({.n = PDP(model, variable = c("Sepal.Width", "Petal.Length"), ice = TRUE, resolution.ice = 3)}, NA) }) }) testthat::test_that("ALE", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_no_torch() set.seed(222) model = dnn(Sepal.Length~., data = datasets::iris, epoch = 2, verbose = FALSE, plot = FALSE) suppressWarnings({ # Build and train Network testthat::expect_error({.n = ALE(model)}, NA) testthat::expect_error({.n = ALE(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"))}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"), K = 4)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "softmax", lr = 0.1, verbose = FALSE, plot = FALSE) testthat::expect_error({.n = ALE(model)}, NA) testthat::expect_error({.n = ALE(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"))}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"), K = 4)}, NA) model = dnn(Species~., data = datasets::iris, epoch = 5, loss = "binomial", lr = 0.1, verbose = FALSE, plot = FALSE) testthat::expect_error({.n = ALE(model)}, NA) testthat::expect_error({.n = ALE(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"))}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"), K = 4)}, NA) iris2 = iris iris2 = iris2[iris2$Species %in% c("setosa", "versicolor"),] iris2$Species = as.integer(iris2$Species) - 1 model = dnn(Species~., data = iris2, epoch = 5, loss = "binomial", lr = 0.1, verbose = TRUE, plot = FALSE) testthat::expect_error({.n = ALE(model)}, NA) testthat::expect_error({.n = ALE(model, variable = "Sepal.Width")}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"))}, NA) testthat::expect_error({.n = ALE(model, variable = c("Sepal.Width", "Petal.Length"), K = 4)}, NA) }) })