################################################################################ # # Data to work on `cirls.fit` # ################################################################################ # Number of obs n <- 1000 # Coefficients betas <- c(0, 1, 2, -1, 1) p <- length(betas) #----- Generate data # Uniform values between 0 and 1 X <- matrix(rnorm(n * p), n, p) # Linear predictor eta <- 1 + X %*% betas # Simulate responses ynorm <- eta + rnorm(n, 0, .2) # A constraint matrix cinc <- diff(diag(p)) #----- Prepare everything for cirls.fit mf <- model.frame(ynorm ~ X) x <- model.matrix(mf) y <- model.response(mf) weights <- model.weights(mf) start <- NULL etastart <- NULL mustart <- NULL offset <- model.offset(mf) family <- gaussian() control <- list(Cmat = list(X = cinc)) intercept <- TRUE singular.ok <- TRUE mt <- terms(mf)