# Chain probabilities ---- # These should work, and return a single number (a probability). cp_1 <- chain_prob(x = c(1,2,3), s0 = 6, sar = 0.1) cp_2 <- chain_prob(x = c(2,1,0), s0 = 4, sar = 0.1) cp_1b <- chain_prob(x = c(1,2,3), s0 = 6, sar = 0.8) cp_2b <- chain_prob(x = c(2,1,0), s0 = 4, sar = 0.8) # Impossible chain, Should return probability 0. cp_0a <- chain_prob(x = c(0,1,0), s0 = 4, sar = 0.8) cp_0b <- chain_prob(x = c(1,0,1), s0 = 4, sar = 0.8) # Chain of length 1 (index case only) is not defined. Should give NA. cp_na1 <- chain_prob(x = c(0), s0 = 4, sar = 0.8) cp_na2 <- chain_prob(x = c(1), s0 = 4, sar = 0.8) test_that("Chain probabilities", { expect_true(is.numeric(cp_1)) expect_true(length(cp_1) == 1) expect_true(is.numeric(cp_2)) expect_true(length(cp_2) == 1) expect_true(is.numeric(cp_1b)) expect_true(length(cp_2b) == 1) expect_true(is.numeric(cp_0a)) expect_true(length(cp_0a) == 1) expect_true(cp_0a == 0) expect_true(is.numeric(cp_0b)) expect_true(length(cp_0b) == 1) expect_true(cp_0b == 0) }) # Generating all scenarios ---- sc1 <- all_scenarios(target = 5, steps = 2) sc2 <- all_scenarios(target = 5, steps = 1) sc3 <- all_scenarios(target = 10, steps = 7) test_that("All scenarions", { expect_true(nrow(sc1) == 2) # nrow == steps. expect_true(all(colSums(sc1) == 5)) # columns sum to target. expect_true(nrow(sc2) == 1) expect_true(all(colSums(sc2) == 5)) expect_true(nrow(sc3) == 7) expect_true(all(colSums(sc3) == 10)) # Same number of columns when the number of steps >= target. expect_true(ncol(all_scenarios(target = 5, steps = 5)) == ncol(all_scenarios(target = 5, steps = 6))) expect_true(ncol(all_scenarios(target = 2, steps = 2)) == ncol(all_scenarios(target = 2, steps = 4))) # Some checks that the scenarios sum to the correct number. expect_true(all(colSums(all_scenarios(target = 5, steps = 1)) == 5)) expect_true(all(colSums(all_scenarios(target = 5, steps = 4)) == 5)) expect_true(all(colSums(all_scenarios(target = 5, steps = 5)) == 5)) expect_true(all(colSums(all_scenarios(target = 5, steps = 8)) == 5)) expect_true(all(colSums(all_scenarios(target = 1, steps = 1)) == 1)) expect_true(all(colSums(all_scenarios(target = 1, steps = 5)) == 1)) expect_true(all(colSums(all_scenarios(target = 0, steps = 1)) == 0)) expect_true(all(colSums(all_scenarios(target = 0, steps = 5)) == 0)) }) # Chain binomial PMF. ---- dcb_1_g1 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 1) dcb_1_g2 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 2) dcb_1_g3 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 3) dcb_1_g4 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 4) dcb_1_g5 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 5) dcb_1_g6 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = 6) dcb_1_ginf <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = Inf) dcb_2_ginf <- dchainbinom(x = 0:5, s0 = 5, sar = 0.00014, i0 = 1, generations = Inf) tol_sum_to_1 <- 2e-15 test_that("PMF is ok", { expect_true(abs(sum(dcb_1_g1) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_g2) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_g3) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_g4) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_g5) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_g6) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_1_ginf) - 1) < tol_sum_to_1) expect_true(abs(sum(dcb_2_ginf) - 1) < tol_sum_to_1) expect_true(all(dcb_1_g1 >= 0)) expect_true(all(dcb_1_g2 >= 0)) expect_true(all(dcb_1_g3 >= 0)) expect_true(all(dcb_1_g4 >= 0)) expect_true(all(dcb_1_g5 >= 0)) expect_true(all(dcb_1_g6 >= 0)) expect_true(all(dcb_1_ginf >= 0)) expect_true(all(dcb_2_ginf >= 0)) expect_true(all(dcb_1_g5 == dcb_1_g6)) expect_true(all(dcb_1_g5 == dcb_1_ginf)) # Probability of more infected than s0 should be 0 expect_true(dchainbinom(x = 0:6, s0 = 5, sar = 0.11, generations = 1)[7] == 0) expect_true(dchainbinom(x = 0:6, s0 = 5, sar = 0.11, generations = 3)[7] == 0) expect_true(dchainbinom(x = 0:6, s0 = 5, sar = 0.11, generations = Inf)[7] == 0) expect_true(dchainbinom(x = 0:6, s0 = 5, sar = 0.11, generations = Inf)[2] != 0) }) # Additional check of sum to 1 check_sum_to_1 <- function(s0, sar, g, i0 = 1){ ss <- sum(dchainbinom(x = 0:s0, s0 = s0, i0=i0, sar= sar, g = g)) if (ss == 1){ return(TRUE) } else { abs(ss-1) < 1e-15 } } test_that("PMF sum to 1", { expect_true(check_sum_to_1(s0 = 3, sar= 0.1, g = 1)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 1)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 1)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 1)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 1)) expect_true(check_sum_to_1(s0 = 3, sar = 0.1, g = 3)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 3)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 3)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 3)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 3)) expect_true(check_sum_to_1(s0 = 3, sar = 0.1, g = 8)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 8)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 8)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 8)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 8)) expect_true(abs(sum(dcb_2_ginf) - 1) < 1e-15) # with i0 = 2. expect_true(check_sum_to_1(s0 = 3, sar= 0.1, g = 1, i0=2)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 1, i0=2)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 1, i0=2)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 1, i0=2)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 1, i0=2)) expect_true(check_sum_to_1(s0 = 3, sar = 0.1, g = 3, i0=2)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 3, i0=2)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 3, i0=2)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 3, i0=2)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 3, i0=2)) expect_true(check_sum_to_1(s0 = 3, sar = 0.1, g = 8, i0=2)) expect_true(check_sum_to_1(s0 = 8, sar= 0.3, g = 8, i0=2)) expect_true(check_sum_to_1(s0 = 2, sar= 0.1, g = 8, i0=2)) expect_true(check_sum_to_1(s0 = 1, sar= 0.2, g = 8, i0=2)) expect_true(check_sum_to_1(s0 = 0, sar= 0.1, g = 8, i0=2)) }) # PMF when g = 1. ---- # Function to test that when the numbers of genereations = 1, # it should be the same as the ordinary binomial model. compare_g1_binom <- function(s0, sar, tol = 0.0000001){ probvec1 <- dchainbinom(x = 0:s0, s0 = s0, sar = sar, generations = 1) probvec1_binom <- dbinom(x = 0:s0, size = s0, prob = sar) all((probvec1 - probvec1_binom < tol)) } test_that("PMF when g = 1", { expect_true(compare_g1_binom(s0 = 3, sar = 0.1)) expect_true(compare_g1_binom(s0 = 8, sar = 0.3)) expect_true(compare_g1_binom(s0 = 2, sar = 0.1)) expect_true(compare_g1_binom(s0 = 1, sar = 0.2)) expect_true(compare_g1_binom(s0 = 0, sar = 0.1)) expect_true(dchainbinom(x = 1, s0 = 0, sar = 0.1, generations = 1) == 0) }) # Prob for x = 0 ---- # The probability for x = 0 should be the same as the ordinary binomial, when i0=1, # but not necessarily if i0 > 1. # Explicit formula for x=0, also implemented in the dchainbinom function. prob0 <- function(sar, s0, i0){ (1 - sar)^(i0*s0) } prob0_tol <- 1e-06 test_that("P(x=0)", { expect_true(abs(prob0(sar = 0.1, s0=1, i0 = 1) - dbinom(x = 0, size = 1, prob = 0.1)) < prob0_tol) expect_true(abs(prob0(sar = 0.5, s0=1, i0 = 1) - dbinom(x = 0, size = 1, prob = 0.5)) < prob0_tol) expect_true(abs(prob0(sar = 0.1, s0=2, i0 = 1) - dbinom(x = 0, size = 2, prob = 0.1)) < prob0_tol) expect_true(abs(prob0(sar = 0.5, s0=2, i0 = 1) - dbinom(x = 0, size = 2, prob = 0.5)) < prob0_tol) expect_true(abs(prob0(sar = 0.1, s0=4, i0 = 1) - dbinom(x = 0, size = 4, prob = 0.1)) < prob0_tol) expect_true(abs(prob0(sar = 0.5, s0=4, i0 = 1) - dbinom(x = 0, size = 4, prob = 0.5)) < prob0_tol) expect_true(prob0(sar = 0.1, s0=2, i0 = 1) == dchainbinom(x = 0, s0 = 2, sar = 0.1, i0 = 1, generations = Inf)) expect_true(prob0(sar = 0.1, s0=2, i0 = 1) == dchainbinom(x = 0, s0 = 2, sar = 0.1, i0 = 1, generations = 1)) expect_true(prob0(sar = 0.1, s0=4, i0 = 1) == dchainbinom(x = 0, s0 = 4, sar = 0.1, i0 = 1, generations=Inf)) expect_true(prob0(sar = 0.1, s0=4, i0 = 1) == dchainbinom(x = 0, s0 = 4, sar = 0.1, i0 = 1, generations=2)) expect_true(dchainbinom(x = 0, s0 = 4, sar = 0.1, i0 = 1, generations = 2) == dchainbinom(x = 0, s0 = 4, sar = 0.1, i0= 1, generations = Inf)) expect_false(prob0(sar = 0.1, s0=1, i0 = 2) == dbinom(x = 0, size = 1, prob = 0.1)) expect_false(prob0(sar = 0.5, s0=1, i0 = 2) == dbinom(x = 0, size = 1, prob = 0.5)) expect_false(prob0(sar = 0.1, s0=3, i0 = 2) == dbinom(x = 0, size = 3, prob = 0.1)) expect_false(prob0(sar = 0.5, s0=3, i0 = 2) == dbinom(x = 0, size = 3, prob = 0.5)) expect_false(dchainbinom(x = 0, s0 = 4, sar = 0.1, i0 = 2, generations = 2) == dchainbinom(x = 0, s0 = 4, sar = 0.1, i0= 1, generations = Inf)) }) # Compare PMF with simulation ---- # Function to approximate the chain binomial distribution after g generations # using simulations. # # example: # simulate_distribution(s0 = 5, sar = 0.1, g=3) simulate_distribution <- function(s0, sar, g, i0 = 1){ probs <- numeric(s0+1) simulated_cb <- rchainbinom(500000, s0 = s0, sar = sar, i0 = i0, g = g) sim_prop <- table(simulated_cb) / length(simulated_cb) probs[as.numeric(names(sim_prop)) + 1 ] <- sim_prop return(probs) } # Compares the PMF with simulated data. compare_pmf_vs_simulation <- function(s0, sar, g, i0 = 1, tol = 0.001, maxtries = 3){ for (ii in 1:maxtries){ probvec <- dchainbinom(x = 0:s0, s0 = s0, sar = sar, i0 = i0, generations = g) probvec_sim <- simulate_distribution(s0 = s0, sar = sar, i0 = i0, g = g) if (all((probvec - probvec_sim < tol))){ return(TRUE) } else { next } } return(FALSE) } if (FALSE){ test_that("PMF vs simulation", { expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, g = 8)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, g = 8)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, g = 8)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, g = 8)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, g = 8)) # with i0 = 2 expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, i0 = 2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, i0 = 2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, i0 = 2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, i0 = 2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, i0 = 2, g = 3)) expect_true(compare_pmf_vs_simulation(s0 = 3, sar = 0.1, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 8, sar = 0.3, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 2, sar = 0.1, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 1, sar = 0.2, i0 = 2, g = 1)) expect_true(compare_pmf_vs_simulation(s0 = 0, sar = 0.1, i0 = 2, g = 1)) } ) } # Expected value ---- # Expeced value should be same as for ordinary binomial when g=1. ecb_vs_eb_g1 <- function(s0, sar){ ecb <- echainbinom(s0 = s0, i0 = 1, sar = sar, generations = 1) eb <- s0*sar #sum(0:s0 * dbinom(x=0:s0, size=s0, prob = sar)) abs(ecb - eb) < 0.00000001 } test_that("Expected value g=1", { expect_true(ecb_vs_eb_g1(s0 = 3, sar=0.1)) expect_true(ecb_vs_eb_g1(s0 = 3, sar=0.6)) expect_true(ecb_vs_eb_g1(s0 = 2, sar=0.1)) expect_true(ecb_vs_eb_g1(s0 = 2, sar=0.6)) expect_true(ecb_vs_eb_g1(s0 = 9, sar=0.1)) expect_true(ecb_vs_eb_g1(s0 = 9, sar=0.6)) }) # chain binomial expected value should be greater than ordinary binomial # when g > 1. ecb_vs_eb <- function(s0, sar, g){ ecb <- echainbinom(s0 = s0, i0 = 1, sar = sar, generations = g) eb <- s0*sar ecb > eb } test_that("Expected value g>1", { expect_true(ecb_vs_eb(s0 = 3, sar=0.1, g=2)) expect_true(ecb_vs_eb(s0 = 3, sar=0.6, g=2)) expect_true(ecb_vs_eb(s0 = 2, sar=0.1, g=2)) expect_true(ecb_vs_eb(s0 = 2, sar=0.6, g=2)) expect_true(ecb_vs_eb(s0 = 9, sar=0.1, g=2)) expect_true(ecb_vs_eb(s0 = 9, sar=0.6, g=2)) expect_true(ecb_vs_eb(s0 = 3, sar=0.1, g=5)) expect_true(ecb_vs_eb(s0 = 3, sar=0.6, g=5)) expect_true(ecb_vs_eb(s0 = 2, sar=0.1, g=5)) expect_true(ecb_vs_eb(s0 = 2, sar=0.6, g=5)) expect_true(ecb_vs_eb(s0 = 9, sar=0.1, g=5)) expect_true(ecb_vs_eb(s0 = 9, sar=0.6, g=5)) expect_true(ecb_vs_eb(s0 = 3, sar=0.1, g=Inf)) expect_true(ecb_vs_eb(s0 = 3, sar=0.6, g=Inf)) expect_true(ecb_vs_eb(s0 = 2, sar=0.1, g=Inf)) expect_true(ecb_vs_eb(s0 = 2, sar=0.6, g=Inf)) expect_true(ecb_vs_eb(s0 = 9, sar=0.1, g=Inf)) expect_true(ecb_vs_eb(s0 = 9, sar=0.6, g=Inf)) }) # The expected value should never be greater than s0. ecb_le_s0 <- function(s0, sar, g){ ecb <- echainbinom(s0 = s0, i0 = 1, sar = sar, generations = g) ecb < s0 } test_that("Expected value < s0", { expect_true(ecb_le_s0(s0 = 3, sar=0.1, g=2)) expect_true(ecb_le_s0(s0 = 3, sar=0.6, g=2)) expect_true(ecb_le_s0(s0 = 2, sar=0.1, g=2)) expect_true(ecb_le_s0(s0 = 2, sar=0.6, g=2)) expect_true(ecb_le_s0(s0 = 9, sar=0.1, g=2)) expect_true(ecb_le_s0(s0 = 9, sar=0.6, g=2)) expect_true(ecb_le_s0(s0 = 3, sar=0.1, g=5)) expect_true(ecb_le_s0(s0 = 3, sar=0.6, g=5)) expect_true(ecb_le_s0(s0 = 2, sar=0.1, g=5)) expect_true(ecb_le_s0(s0 = 2, sar=0.6, g=5)) expect_true(ecb_le_s0(s0 = 9, sar=0.1, g=5)) expect_true(ecb_le_s0(s0 = 9, sar=0.6, g=5)) expect_true(ecb_le_s0(s0 = 3, sar=0.1, g=Inf)) expect_true(ecb_le_s0(s0 = 3, sar=0.6, g=Inf)) expect_true(ecb_le_s0(s0 = 2, sar=0.1, g=Inf)) expect_true(ecb_le_s0(s0 = 2, sar=0.6, g=Inf)) expect_true(ecb_le_s0(s0 = 9, sar=0.1, g=Inf)) expect_true(ecb_le_s0(s0 = 9, sar=0.6, g=Inf)) }) # The expected value should equal s0 when sar = 1. ecb_eq_s0_sar_eq_1 <- function(s0, i0, g){ ecb <- echainbinom(s0 = s0, i0 = i0, sar = 1, generations = g) ecb == s0 } test_that("Expected value == s0", { expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 1, g = 1)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 1, g = 2)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 1, g = 3)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 1, g = Inf)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 2, g = 1)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 2, g = 2)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 2, g = 3)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 3, i0 = 2, g = Inf)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 9, i0 = 2, g = 1)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 9, i0 = 2, g = 2)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 9, i0 = 2, g = 3)) expect_true(ecb_eq_s0_sar_eq_1(s0 = 9, i0 = 2, g = Inf)) }) # Estimation and modelling ---- # Example data set that works for all link-functions. mod_dat1 <- data.frame(infected = c(1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,0, 2, 1, 1, 0, 0, 1, 0, 1, 0, 0), s0 = c(3, 1, 3, 2, 2, 1, 5, 2, 1, 1, 3, 2, 2, 1, 5, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1), x = c(-0.03, 1.48, 0.06, -0.35, -1.69, 1.83, -0.05, 1.25, 1.28, -1.55,1.53, -0.17, 0.08, 0.32, -1.39, 1.89, -0.47, -0.07, -1.19, -0.25, 0.65, 1.41, 0.84, -2.05, -0.15, 0.45, -1.48, -1.41, 2.16, -1.75)) # Make model matrix. xmat <- model.matrix(~ x, data=mod_dat1) # model matrix with missing values. xmat_na <- xmat xmat_na[16,2] <- NA # Example data set where everyone are infected. mod_dat_all <- data.frame(infected = c(2, 1, 2, 2, 2, 2, 5, 1, 1, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3), s0 = c(2, 1, 2, 2, 2, 2, 5, 1, 1, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3)) # Example data set where no one is infected. mod_dat_none <- data.frame(infected = rep(0, 20), s0 = c(2, 2, 1, 2, 2, 2, 5, 1, 1, 1, 5, 3, 1, 2, 2, 4, 1, 1, 1, 1)) # Example data set where, which caused problems with 99% CI. mod_dat2 <- data.frame(infected = c(2, 1, 2, 5, 2, 2, 2, 1, 3, 2), s0 = c(2, 2, 2, 5, 2, 2, 2, 1, 3, 2), generations = 1) # modified data sets with missing values. mod_dat1_na <- mod_dat1 mod_dat1_na$infected[c(5)] <- NA mod_dat1_na2 <- mod_dat1 mod_dat1_na2$s0[c(8)] <- NA mod_dat1_na3 <- mod_dat1 mod_dat1_na3$s0[c(8)] <- NA mod_dat1_na3$infected[c(5)] <- NA test_that("simple estimation works", { expect_no_condition( sar_est_1_ginf <- estimate_sar(infected = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf) ) expect_no_condition( sar_est_1_g1 <- estimate_sar(infected = mod_dat1$infected, s0 = mod_dat1$s0, generations = 1) ) expect_no_condition( sar_est_1_g2 <- estimate_sar(infected = mod_dat1$infected, s0 = mod_dat1$s0, generations = 2) ) expect_no_condition( sar_est_2_g1 <- estimate_sar(infected = mod_dat2$infected, s0 = mod_dat2$s0, generations = 1) ) expect_true('sar' %in% class(sar_est_1_ginf)) # The reasonableness of results. expect_true(!is.na(sar_est_1_ginf$sar_hat)) expect_true(is.numeric(sar_est_1_ginf$sar_hat)) expect_true(sar_est_1_ginf$sar_hat <= 1) expect_true(sar_est_1_ginf$sar_hat >= 0) expect_true(!is.na(sar_est_1_g1$sar_hat)) expect_true(is.numeric(sar_est_1_g1$sar_hat)) expect_true(sar_est_1_g1$sar_hat <= 1) expect_true(sar_est_1_g1$sar_hat >= 0) expect_true(!is.na(sar_est_1_g2$sar_hat)) expect_true(is.numeric(sar_est_1_g2$sar_hat)) expect_true(sar_est_1_g2$sar_hat <= 1) expect_true(sar_est_1_g2$sar_hat >= 0) expect_true(!is.na(sar_est_2_g1$sar_hat)) expect_true(is.numeric(sar_est_2_g1$sar_hat)) expect_true(sar_est_2_g1$sar_hat <= 1) expect_true(sar_est_2_g1$sar_hat >= 0) # Estimates should not be the same. expect_false(sar_est_1_g2$sar_hat == sar_est_1_g1$sar_hat) expect_false(sar_est_1_g2$sar_hat == sar_est_1_ginf$sar_hat) expect_false(sar_est_1_g1$sar_hat == sar_est_1_ginf$sar_hat) # Confidence intervals. # Check default values expect_no_condition( sar_est_1_ginf_ci_default <- confint(sar_est_1_ginf) ) expect_no_condition( sar_est_1_ginf_ci_99_chisq <- confint(sar_est_1_ginf, method = 'chisq', level = 0.99) ) expect_no_condition( sar_est_1_ginf_ci_95_chisq <- confint(sar_est_1_ginf, method = 'chisq', level = 0.95) ) expect_no_condition( sar_est_1_ginf_ci_90_chisq <- confint(sar_est_1_ginf, method = 'chisq', level = 0.9) ) # Check that the upper and lower ends are correct. expect_true(sar_est_1_ginf_ci_default[1] < sar_est_1_ginf_ci_default[2]) expect_true(sar_est_1_ginf_ci_99_chisq[1] < sar_est_1_ginf_ci_99_chisq[2]) expect_true(sar_est_1_ginf_ci_95_chisq[1] < sar_est_1_ginf_ci_95_chisq[2]) expect_true(sar_est_1_ginf_ci_90_chisq[1] < sar_est_1_ginf_ci_90_chisq[2]) # Compare default arguments with explicitly provided arguments. expect_true(sar_est_1_ginf_ci_default[1] == sar_est_1_ginf_ci_95_chisq[1]) expect_true(sar_est_1_ginf_ci_default[2] == sar_est_1_ginf_ci_95_chisq[2]) expect_true(sar_est_1_ginf_ci_99_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_95_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_95_chisq[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_99_chisq[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_90_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_90_chisq[2] > sar_est_1_ginf$sar_hat) # Check that the 95% interval is wider than the 90% interval. expect_true(sar_est_1_ginf_ci_99_chisq[1] < sar_est_1_ginf_ci_95_chisq[1]) expect_true(sar_est_1_ginf_ci_95_chisq[1] < sar_est_1_ginf_ci_90_chisq[1]) expect_true(sar_est_1_ginf_ci_95_chisq[2] > sar_est_1_ginf_ci_90_chisq[2]) expect_true(sar_est_1_ginf_ci_99_chisq[2] > sar_est_1_ginf_ci_95_chisq[2]) # for the generation = 1 estimates. expect_no_condition( sar_est_1_g1_ci_default <- confint(sar_est_1_g1) ) expect_no_condition( sar_est_1_g1_ci_99_chisq <- confint(sar_est_1_g1, method = 'chisq', level = 0.99) ) expect_no_condition( sar_est_1_g1_ci_95_chisq <- confint(sar_est_1_g1, method = 'chisq', level = 0.95) ) expect_no_condition( sar_est_1_g1_ci_90_chisq <- confint(sar_est_1_g1, method = 'chisq', level = 0.9) ) expect_true(sar_est_1_g1_ci_99_chisq[1] < sar_est_1_g1_ci_99_chisq[2]) expect_true(sar_est_1_g1_ci_95_chisq[1] < sar_est_1_g1_ci_95_chisq[2]) expect_true(sar_est_1_g1_ci_90_chisq[1] < sar_est_1_g1_ci_90_chisq[2]) expect_true(sar_est_1_g1_ci_99_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_99_chisq[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_95_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_95_chisq[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_90_chisq[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_90_chisq[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_ci_99_chisq[1] < sar_est_1_g1_ci_95_chisq[1]) expect_true(sar_est_1_g1_ci_95_chisq[1] < sar_est_1_g1_ci_90_chisq[1]) expect_true(sar_est_1_g1_ci_95_chisq[2] > sar_est_1_g1_ci_90_chisq[2]) expect_true(sar_est_1_g1_ci_99_chisq[2] > sar_est_1_g1_ci_95_chisq[2]) expect_true(sar_est_1_g1_ci_default[1] == sar_est_1_g1_ci_95_chisq[1]) expect_true(sar_est_1_g1_ci_default[2] == sar_est_1_g1_ci_95_chisq[2]) # Test confidence intervals computed using the the 'normal' method. expect_no_condition( sar_est_1_ginf_ci_95_norm <- confint(sar_est_1_ginf, method = 'normal', level = 0.95) ) expect_no_condition( sar_est_1_ginf_ci_90_norm <- confint(sar_est_1_ginf, method = 'normal', level = 0.90) ) # Check that the upper and lower ends are correct. expect_true(sar_est_1_ginf_ci_95_norm[1] < sar_est_1_ginf_ci_95_norm[2]) expect_true(sar_est_1_ginf_ci_90_norm[1] < sar_est_1_ginf_ci_90_norm[2]) expect_true(sar_est_1_ginf_ci_95_norm[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_95_norm[2] > sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_90_norm[1] < sar_est_1_ginf$sar_hat) expect_true(sar_est_1_ginf_ci_90_norm[2] > sar_est_1_ginf$sar_hat) # Check that the 95% interval is wider than the 90% interval. expect_true(sar_est_1_ginf_ci_95_norm[1] < sar_est_1_ginf_ci_90_norm[1]) expect_true(sar_est_1_ginf_ci_95_norm[2] > sar_est_1_ginf_ci_90_norm[2]) # Check that the normal and chisq methods does not give exactly the same answers. expect_false(sar_est_1_ginf_ci_95_norm[1] == sar_est_1_ginf_ci_95_chisq[1]) expect_false(sar_est_1_ginf_ci_95_norm[2] == sar_est_1_ginf_ci_95_chisq[2]) expect_false(sar_est_1_ginf_ci_90_norm[1] == sar_est_1_ginf_ci_90_chisq[1]) expect_false(sar_est_1_ginf_ci_90_norm[2] == sar_est_1_ginf_ci_90_chisq[2]) # Check the edge cases with none and all infected. expect_no_condition( sar_est_all_ginf <- estimate_sar(infected = mod_dat_all$infected, s0 = mod_dat_all$s0, generations = Inf) ) expect_no_condition( sar_est_none_ginf <- estimate_sar(infected = mod_dat_none$infected, s0 = mod_dat_none$s0, generations = Inf) ) # The reasonableness of results. expect_true(!is.na(sar_est_all_ginf$sar_hat)) expect_true(is.numeric(sar_est_all_ginf$sar_hat)) expect_true(sar_est_all_ginf$sar_hat <= 1) expect_true(sar_est_all_ginf$sar_hat >= 0) expect_true(sar_est_all_ginf$sar_hat >= 0.99) # Point estimate should be close to 1. expect_true(!is.na(sar_est_none_ginf$sar_hat)) expect_true(is.numeric(sar_est_none_ginf$sar_hat)) expect_true(sar_est_none_ginf$sar_hat <= 1) expect_true(sar_est_none_ginf$sar_hat >= 0) expect_true(sar_est_none_ginf$sar_hat <= 0.01) # Point estimate should be close to 0. # CI's for the "all infected" data. expect_no_condition( sar_est_all_ginf_ci_99_chisq <- confint(sar_est_all_ginf, method = 'chisq', level = 0.99) ) expect_no_condition( sar_est_all_ginf_ci_95_chisq <- confint(sar_est_all_ginf, method = 'chisq', level = 0.95) ) expect_no_condition( sar_est_all_ginf_ci_90_chisq <- confint(sar_est_all_ginf, method = 'chisq', level = 0.90) ) expect_true(sar_est_all_ginf_ci_99_chisq[1] < sar_est_all_ginf_ci_99_chisq[2]) expect_true(sar_est_all_ginf_ci_95_chisq[1] < sar_est_all_ginf_ci_95_chisq[2]) expect_true(sar_est_all_ginf_ci_90_chisq[1] < sar_est_all_ginf_ci_90_chisq[2]) expect_true(sar_est_all_ginf_ci_95_chisq[1] < sar_est_all_ginf$sar_hat) expect_true(sar_est_all_ginf_ci_95_chisq[2] >= sar_est_all_ginf$sar_hat) expect_true(sar_est_all_ginf_ci_90_chisq[1] < sar_est_all_ginf$sar_hat) expect_true(sar_est_all_ginf_ci_90_chisq[2] >= sar_est_all_ginf$sar_hat) expect_true(sar_est_all_ginf_ci_99_chisq[1] < sar_est_all_ginf_ci_95_chisq[1]) expect_true(sar_est_all_ginf_ci_95_chisq[1] < sar_est_all_ginf_ci_90_chisq[1]) expect_true(sar_est_all_ginf_ci_95_chisq[2] >= sar_est_all_ginf_ci_90_chisq[2]) expect_true(sar_est_all_ginf_ci_99_chisq[2] >= sar_est_all_ginf_ci_95_chisq[2]) # CI's for the "none infected" data. expect_no_condition( sar_est_none_ginf_ci_99_chisq <- confint(sar_est_none_ginf, method = 'chisq', level = 0.99) ) expect_no_condition( sar_est_none_ginf_ci_95_chisq <- confint(sar_est_none_ginf, method = 'chisq', level = 0.95) ) expect_no_condition( sar_est_none_ginf_ci_90_chisq <- confint(sar_est_none_ginf, method = 'chisq', level = 0.90) ) expect_true(sar_est_none_ginf_ci_99_chisq[1] < sar_est_none_ginf_ci_99_chisq[2]) expect_true(sar_est_none_ginf_ci_95_chisq[1] < sar_est_none_ginf_ci_95_chisq[2]) expect_true(sar_est_none_ginf_ci_90_chisq[1] < sar_est_none_ginf_ci_90_chisq[2]) expect_true(sar_est_none_ginf_ci_99_chisq[1] <= sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_99_chisq[2] > sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_95_chisq[1] <= sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_95_chisq[2] > sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_90_chisq[1] <= sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_90_chisq[2] > sar_est_none_ginf$sar_hat) expect_true(sar_est_none_ginf_ci_99_chisq[1] <= sar_est_none_ginf_ci_95_chisq[1]) expect_true(sar_est_none_ginf_ci_95_chisq[1] <= sar_est_none_ginf_ci_90_chisq[1]) expect_true(sar_est_none_ginf_ci_95_chisq[2] > sar_est_none_ginf_ci_90_chisq[2]) expect_true(sar_est_none_ginf_ci_99_chisq[2] > sar_est_none_ginf_ci_95_chisq[2]) # Ci for mod_dat2. expect_no_condition( sar_est_2_g1_ci_99_chisq <- confint(sar_est_2_g1, method = 'chisq', level = 0.99) ) expect_no_condition( sar_est_2_g1_ci_95_chisq <- confint(sar_est_2_g1, method = 'chisq', level = 0.95) ) expect_true(sar_est_2_g1_ci_99_chisq[1] < sar_est_2_g1_ci_99_chisq[2]) expect_true(sar_est_2_g1_ci_95_chisq[1] < sar_est_2_g1_ci_95_chisq[2]) expect_true(sar_est_2_g1_ci_99_chisq[1] < sar_est_2_g1$sar_hat) expect_true(sar_est_2_g1_ci_99_chisq[2] > sar_est_2_g1$sar_hat) expect_true(sar_est_2_g1_ci_95_chisq[1] < sar_est_2_g1$sar_hat) expect_true(sar_est_2_g1_ci_95_chisq[2] > sar_est_2_g1$sar_hat) expect_true(sar_est_2_g1_ci_99_chisq[1] < sar_est_2_g1_ci_95_chisq[1]) expect_true(sar_est_2_g1_ci_99_chisq[2] > sar_est_2_g1_ci_95_chisq[2]) # Missing values. # Missing in infected expect_no_condition( sar_est_1_ginf_na <- estimate_sar(infected = mod_dat1_na$infected, s0 = mod_dat1_na$s0, generations = Inf) ) expect_no_condition( sar_est_1_g1_na <- estimate_sar(infected = mod_dat1_na$infected, s0 = mod_dat1_na$s0, generations = 1) ) expect_no_condition( sar_est_1_g2_na <- estimate_sar(infected = mod_dat1_na$infected, s0 = mod_dat1_na$s0, generations = 2) ) # missing in s0 expect_no_condition( sar_est_1_ginf_na2 <- estimate_sar(infected = mod_dat1_na2$infected, s0 = mod_dat1_na2$s0, generations = Inf) ) expect_no_condition( sar_est_1_g1_na2 <- estimate_sar(infected = mod_dat1_na2$infected, s0 = mod_dat1_na2$s0, generations = 1) ) expect_no_condition( sar_est_1_g2_na2 <- estimate_sar(infected = mod_dat1_na2$infected, s0 = mod_dat1_na2$s0, generations = 2) ) # Check that the estimates are not identical. expect_true(sar_est_1_ginf_na$sar_hat != sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_na$sar_hat != sar_est_1_g1$sar_hat) expect_true(sar_est_1_g2_na$sar_hat != sar_est_1_g2$sar_hat) expect_true(sar_est_1_ginf_na2$sar_hat != sar_est_1_ginf$sar_hat) expect_true(sar_est_1_g1_na2$sar_hat != sar_est_1_g1$sar_hat) expect_true(sar_est_1_g2_na2$sar_hat != sar_est_1_g2$sar_hat) # missing values CI expect_no_condition( sar_est_1_ginf_ci_95_chisq_na <- confint(sar_est_1_ginf_na, method = 'chisq', level = 0.95) ) expect_no_condition( sar_est_1_ginf_ci_95_norm_na <- confint(sar_est_1_ginf_na, method = 'normal', level = 0.95) ) expect_true(sar_est_1_ginf_ci_95_chisq_na[1] < sar_est_1_ginf_ci_95_chisq_na[2]) expect_true(sar_est_1_ginf_ci_95_norm_na[1] < sar_est_1_ginf_ci_95_norm_na[2]) # Reasonableness when there are missing values expect_true(!is.na(sar_est_1_ginf_na$sar_hat)) expect_true(is.numeric(sar_est_1_ginf_na$sar_hat)) expect_true(sar_est_1_ginf_na$sar_hat <= 1) expect_true(sar_est_1_ginf_na$sar_hat >= 0) }) # cbmod(y = mod_dat1_na$infected, s0 = mod_dat1_na$s0, generations = Inf, x = xmat, link = 'identity') # inp <- as.matrix(cbind(xmat, mod_dat1_na$infected, mod_dat1_na$s0, i0 = 1, generations = Inf)) # na_idx <- apply(inp, FUN = function(x){any(is.na(x))}, MARGIN = 1) # inp <- inp[!na_idx,] # # # # glm_res_na <- glm(mod_dat1_na$infected ~ xmat, family = poisson()) # glm_res_na$na.action # # na.omit(mod_dat1_na$infected) # na.omit(xmat, mod_dat1_na$infected) test_that("modelling works", { expect_no_condition( cb_mod_res_id <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'identity') ) expect_no_condition( cb_mod_res_log <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'log') ) expect_no_condition( cb_mod_res_logit <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'logit') ) expect_no_condition( cb_mod_res_cloglog <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'cloglog') ) # with missing values expect_no_condition( cb_mod_res_id_na <- cbmod(y = mod_dat1_na$infected, s0 = mod_dat1_na$s0, generations = Inf, x = xmat, link = 'identity') ) expect_no_condition( cb_mod_res_id_na2 <- cbmod(y = mod_dat1_na2$infected, s0 = mod_dat1_na2$s0, generations = Inf, x = xmat, link = 'identity') ) expect_no_condition( cb_mod_res_id_na3 <- cbmod(y = mod_dat1_na3$infected, s0 = mod_dat1_na3$s0, generations = Inf, x = xmat, link = 'identity') ) expect_no_condition( cb_mod_res_id_na4 <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat_na, link = 'identity') ) expect_no_condition( cb_mod_res_id_na5 <- cbmod(y = mod_dat1_na3$infected, s0 = mod_dat1_na3$s0, generations = Inf, x = xmat_na, link = 'identity') ) expect_true('cbmod' %in% class(cb_mod_res_id)) expect_true('cbmod' %in% class(cb_mod_res_log)) expect_true('cbmod' %in% class(cb_mod_res_logit)) expect_true('cbmod' %in% class(cb_mod_res_cloglog)) expect_true('cbmod' %in% class(cb_mod_res_id_na)) expect_true('cbmod' %in% class(cb_mod_res_id_na2)) expect_true('cbmod' %in% class(cb_mod_res_id_na3)) expect_true('cbmod' %in% class(cb_mod_res_id_na4)) expect_true('cbmod' %in% class(cb_mod_res_id_na5)) expect_true(cb_mod_res_id$link == 'identity') expect_true(cb_mod_res_log$link == 'log') expect_true(cb_mod_res_logit$link == 'logit') expect_true(cb_mod_res_cloglog$link == 'cloglog') expect_true(cb_mod_res_id_na$link == 'identity') expect_true(cb_mod_res_id_na2$link == 'identity') expect_true(cb_mod_res_id_na3$link == 'identity') expect_true(cb_mod_res_id_na4$link == 'identity') expect_true(cb_mod_res_id_na5$link == 'identity') expect_true(length(cb_mod_res_id$parameters) == 2) expect_true(length(cb_mod_res_log$parameters) == 2) expect_true(length(cb_mod_res_logit$parameters) == 2) expect_true(length(cb_mod_res_cloglog$parameters) == 2) expect_true(length(cb_mod_res_id_na$parameters) == 2) expect_true(length(cb_mod_res_id_na2$parameters) == 2) expect_true(length(cb_mod_res_id_na3$parameters) == 2) expect_true(length(cb_mod_res_id_na4$parameters) == 2) expect_true(length(cb_mod_res_id_na5$parameters) == 2) expect_true(all(!is.na(cb_mod_res_id$parameters))) expect_true(all(!is.na(cb_mod_res_log$parameters))) expect_true(all(!is.na(cb_mod_res_logit$parameters))) expect_true(all(!is.na(cb_mod_res_cloglog$parameters))) expect_true(all(!is.na(cb_mod_res_id_na$parameters))) expect_true(all(!is.na(cb_mod_res_id_na2$parameters))) expect_true(all(!is.na(cb_mod_res_id_na3$parameters))) expect_true(all(!is.na(cb_mod_res_id_na4$parameters))) expect_true(all(!is.na(cb_mod_res_id_na5$parameters))) expect_true(!is.na(cb_mod_res_id$loglikelihood)) expect_true(!is.na(cb_mod_res_log$loglikelihood)) expect_true(!is.na(cb_mod_res_logit$loglikelihood)) expect_true(!is.na(cb_mod_res_cloglog$loglikelihood)) expect_true(!is.na(cb_mod_res_id_na$loglikelihood)) expect_true(!is.na(cb_mod_res_id_na2$loglikelihood)) expect_true(!is.na(cb_mod_res_id_na3$loglikelihood)) expect_true(!is.na(cb_mod_res_id_na4$loglikelihood)) expect_true(!is.na(cb_mod_res_id_na5$loglikelihood)) expect_true(length(cb_mod_res_id$fitted_values) == nrow(mod_dat1)) expect_true(length(cb_mod_res_log$fitted_values) == nrow(mod_dat1)) expect_true(length(cb_mod_res_logit$fitted_values) == nrow(mod_dat1)) expect_true(length(cb_mod_res_cloglog$fitted_values) == nrow(mod_dat1)) expect_true(length(cb_mod_res_id_na$fitted_values) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na2$fitted_values) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na3$fitted_values) == nrow(mod_dat1) - 2) # minus 2 because of two missing values. expect_true(length(cb_mod_res_id_na4$fitted_values) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na5$fitted_values) == nrow(mod_dat1) - 3) # minus 3 because of three missing value. expect_true(all(!is.na(cb_mod_res_id$fitted_values))) expect_true(all(!is.na(cb_mod_res_log$fitted_values))) expect_true(all(!is.na(cb_mod_res_logit$fitted_values))) expect_true(all(!is.na(cb_mod_res_cloglog$fitted_values))) expect_true(all(!is.na(cb_mod_res_id_na$fitted_values))) expect_true(all(!is.na(cb_mod_res_id_na2$fitted_values))) expect_true(all(!is.na(cb_mod_res_id_na3$fitted_values))) expect_true(all(!is.na(cb_mod_res_id_na4$fitted_values))) expect_true(all(!is.na(cb_mod_res_id_na5$fitted_values))) expect_true(length(cb_mod_res_id$sar_hat) == nrow(mod_dat1)) expect_true(length(cb_mod_res_log$sar_hat) == nrow(mod_dat1)) expect_true(length(cb_mod_res_logit$sar_hat) == nrow(mod_dat1)) expect_true(length(cb_mod_res_cloglog$sar_hat) == nrow(mod_dat1)) expect_true(length(cb_mod_res_id_na$sar_hat) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na2$sar_hat) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na3$sar_hat) == nrow(mod_dat1) - 2) # minus 2 because of two missing values. expect_true(length(cb_mod_res_id_na4$sar_hat) == nrow(mod_dat1) - 1) # minus 1 because of one missing value. expect_true(length(cb_mod_res_id_na5$sar_hat) == nrow(mod_dat1) - 3) # minus 3 because of three missing value. expect_true(nrow(cb_mod_res_id$vcov) == length(cb_mod_res_id$parameters)) expect_true(nrow(cb_mod_res_log$vcov) == length(cb_mod_res_log$parameters)) expect_true(nrow(cb_mod_res_logit$vcov) == length(cb_mod_res_logit$parameters)) expect_true(nrow(cb_mod_res_cloglog$vcov) == length(cb_mod_res_cloglog$parameters)) expect_true(nrow(cb_mod_res_id_na$vcov) == length(cb_mod_res_id_na$parameters)) expect_true(nrow(cb_mod_res_id_na2$vcov) == length(cb_mod_res_id_na2$parameters)) expect_true(nrow(cb_mod_res_id_na3$vcov) == length(cb_mod_res_id_na3$parameters)) expect_true(nrow(cb_mod_res_id_na4$vcov) == length(cb_mod_res_id_na4$parameters)) expect_true(nrow(cb_mod_res_id_na5$vcov) == length(cb_mod_res_id_na5$parameters)) expect_true(nrow(cb_mod_res_id$vcov) == ncol(cb_mod_res_id$vcov)) expect_true(nrow(cb_mod_res_log$vcov) == ncol(cb_mod_res_log$vcov)) expect_true(nrow(cb_mod_res_logit$vcov) == ncol(cb_mod_res_logit$vcov)) expect_true(nrow(cb_mod_res_cloglog$vcov) == ncol(cb_mod_res_cloglog$vcov)) expect_true(nrow(cb_mod_res_id_na$vcov) == ncol(cb_mod_res_id_na$vcov)) expect_true(nrow(cb_mod_res_id_na2$vcov) == ncol(cb_mod_res_id_na2$vcov)) expect_true(nrow(cb_mod_res_id_na3$vcov) == ncol(cb_mod_res_id_na3$vcov)) expect_true(nrow(cb_mod_res_id_na4$vcov) == ncol(cb_mod_res_id_na4$vcov)) expect_true(nrow(cb_mod_res_id_na5$vcov) == ncol(cb_mod_res_id_na5$vcov)) expect_true(length(cb_mod_res_id$omitted_values) == 0) expect_true(length(cb_mod_res_log$omitted_values) == 0) expect_true(length(cb_mod_res_logit$omitted_values) == 0) expect_true(length(cb_mod_res_cloglog$omitted_values) == 0) expect_true(length(cb_mod_res_id_na$omitted_values) == 1) expect_true(length(cb_mod_res_id_na2$omitted_values) == 1) expect_true(length(cb_mod_res_id_na3$omitted_values) == 2) expect_true(length(cb_mod_res_id_na4$omitted_values) == 1) expect_true(length(cb_mod_res_id_na5$omitted_values) == 3) # Confidence intervals. expect_no_condition( cbmod_ci_id <- confint(cb_mod_res_id, level = 0.95) ) expect_no_condition( cbmod_ci_log <- confint(cb_mod_res_log, level = 0.95) ) expect_no_condition( cbmod_ci_logit <- confint(cb_mod_res_logit, level = 0.95) ) expect_no_condition( cbmod_ci_cloglog <- confint(cb_mod_res_cloglog, level = 0.95) ) expect_no_condition( cbmod_ci_id_na <- confint(cb_mod_res_id_na, level = 0.95) ) expect_no_condition( cbmod_ci_id_na2 <- confint(cb_mod_res_id_na2, level = 0.95) ) expect_no_condition( cbmod_ci_id_na3 <- confint(cb_mod_res_id_na3, level = 0.95) ) expect_no_condition( cbmod_ci_id_na4 <- confint(cb_mod_res_id_na4, level = 0.95) ) expect_no_condition( cbmod_ci_id_na5 <- confint(cb_mod_res_id_na5, level = 0.95) ) # Test parm argument expect_no_condition(confint(cb_mod_res_id, parm = c('x'))) expect_no_condition(confint(cb_mod_res_id, parm = c('(Intercept)'))) expect_no_condition(confint(cb_mod_res_id, parm = c('x', '(Intercept)'))) expect_warning(confint(cb_mod_res_id, parm = c('x', '(Intercept)', 'zzz'))) expect_error(confint(cb_mod_res_id, parm = c('zzz'))) expect_no_condition(confint(cb_mod_res_id, parm = 1)) expect_no_condition(confint(cb_mod_res_id, parm = 2)) expect_no_condition(confint(cb_mod_res_id, parm = 1:2)) expect_error(confint(cb_mod_res_id, parm = 1:3)) expect_error(confint(cb_mod_res_id, parm = 3)) expect_error(confint(cb_mod_res_id, parm = 0)) expect_true(all(dim(cbmod_ci_id) == c(2,2))) expect_true(all(dim(cbmod_ci_log) == c(2,2))) expect_true(all(dim(cbmod_ci_logit) == c(2,2))) expect_true(all(dim(cbmod_ci_cloglog) == c(2,2))) expect_true(all(dim(cbmod_ci_id_na) == c(2,2))) expect_true(all(dim(cbmod_ci_id_na2) == c(2,2))) expect_true(all(dim(cbmod_ci_id_na3) == c(2,2))) expect_true(all(dim(cbmod_ci_id_na4) == c(2,2))) expect_true(all(dim(cbmod_ci_id_na5) == c(2,2))) expect_false(any(is.na(cbmod_ci_id))) expect_false(any(is.na(cbmod_ci_log))) expect_false(any(is.na(cbmod_ci_logit))) expect_false(any(is.na(cbmod_ci_cloglog))) expect_false(any(is.na(cbmod_ci_id_na))) expect_false(any(is.na(cbmod_ci_id_na2))) expect_false(any(is.na(cbmod_ci_id_na3))) expect_false(any(is.na(cbmod_ci_id_na4))) expect_false(any(is.na(cbmod_ci_id_na5))) expect_true(all(cbmod_ci_id[,1] < cbmod_ci_id[,2])) expect_true(all(cbmod_ci_log[,1] < cbmod_ci_log[,2])) expect_true(all(cbmod_ci_logit[,1] < cbmod_ci_logit[,2])) expect_true(all(cbmod_ci_cloglog[,1] < cbmod_ci_cloglog[,2])) expect_true(all(cbmod_ci_id_na[,1] < cbmod_ci_id_na[,2])) expect_true(all(cbmod_ci_id_na2[,1] < cbmod_ci_id_na2[,2])) expect_true(all(cbmod_ci_id_na3[,1] < cbmod_ci_id_na3[,2])) expect_true(all(cbmod_ci_id_na4[,1] < cbmod_ci_id_na4[,2])) expect_true(all(cbmod_ci_id_na5[,1] < cbmod_ci_id_na5[,2])) expect_true(all(cbmod_ci_id[,1] < cb_mod_res_id$parameters)) expect_true(all(cbmod_ci_log[,1] < cb_mod_res_log$parameters)) expect_true(all(cbmod_ci_logit[,1] < cb_mod_res_logit$parameters)) expect_true(all(cbmod_ci_cloglog[,1] < cb_mod_res_cloglog$parameters)) expect_true(all(cbmod_ci_id_na[,1] < cb_mod_res_id_na$parameters)) expect_true(all(cbmod_ci_id_na2[,1] < cb_mod_res_id_na2$parameters)) expect_true(all(cbmod_ci_id_na3[,1] < cb_mod_res_id_na3$parameters)) expect_true(all(cbmod_ci_id_na4[,1] < cb_mod_res_id_na4$parameters)) expect_true(all(cbmod_ci_id_na5[,1] < cb_mod_res_id_na5$parameters)) expect_true(all(cbmod_ci_id[,2] > cb_mod_res_id$parameters)) expect_true(all(cbmod_ci_log[,2] > cb_mod_res_log$parameters)) expect_true(all(cbmod_ci_logit[,2] > cb_mod_res_logit$parameters)) expect_true(all(cbmod_ci_cloglog[,2] > cb_mod_res_cloglog$parameters)) expect_true(all(cbmod_ci_id_na[,2] > cb_mod_res_id_na$parameters)) expect_true(all(cbmod_ci_id_na2[,2] > cb_mod_res_id_na2$parameters)) expect_true(all(cbmod_ci_id_na3[,2] > cb_mod_res_id_na3$parameters)) expect_true(all(cbmod_ci_id_na4[,2] > cb_mod_res_id_na4$parameters)) expect_true(all(cbmod_ci_id_na5[,2] > cb_mod_res_id_na5$parameters)) }) # Copypasta from "modelling works" cb_mod_res_id <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'identity') cb_mod_res_log <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'log') cb_mod_res_logit <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'logit') cb_mod_res_cloglog <- cbmod(y = mod_dat1$infected, s0 = mod_dat1$s0, generations = Inf, x = xmat, link = 'cloglog') # extreme value x = -50 gives negative sar for identity link. my_new_data <- data.frame(x=c(-50, -2, -1, 0, 1, 2)) newx <- model.matrix(~ x, data = my_new_data) test_that("making predictions", { expect_no_condition( cb_mod_pred_link_id <- predict(cb_mod_res_id, x = newx, type = 'link') ) expect_no_condition( cb_mod_pred_link_log <- predict(cb_mod_res_log, x = newx, type = 'link') ) expect_no_condition( cb_mod_pred_link_logit <- predict(cb_mod_res_logit, x = newx, type = 'link') ) expect_no_condition( cb_mod_pred_link_cloglog <- predict(cb_mod_res_cloglog, x = newx, type = 'link') ) expect_warning( cb_mod_pred_sar_id <- predict(cb_mod_res_id, x = newx, type = 'sar') # gives a warning. ) expect_no_condition( cb_mod_pred_sar_log <- predict(cb_mod_res_log, x = newx, type = 'sar') ) expect_no_condition( cb_mod_pred_sar_logit <- predict(cb_mod_res_logit, x = newx, type = 'sar') ) expect_no_condition( cb_mod_pred_sar_cloglog <- predict(cb_mod_res_cloglog, x = newx, type = 'sar') ) expect_true(length(cb_mod_pred_link_id) == nrow(newx)) expect_true(length(cb_mod_pred_link_log) == nrow(newx)) expect_true(length(cb_mod_pred_link_logit) == nrow(newx)) expect_true(length(cb_mod_pred_link_cloglog) == nrow(newx)) expect_true(any(!is.na(cb_mod_pred_link_id))) expect_true(any(!is.na(cb_mod_pred_link_log))) expect_true(any(!is.na(cb_mod_pred_link_logit))) expect_true(any(!is.na(cb_mod_pred_link_cloglog))) expect_true(length(cb_mod_pred_sar_id) == nrow(newx)) expect_true(length(cb_mod_pred_sar_log) == nrow(newx)) expect_true(length(cb_mod_pred_sar_logit) == nrow(newx)) expect_true(length(cb_mod_pred_sar_cloglog) == nrow(newx)) expect_true(any(!is.na(cb_mod_pred_sar_id))) expect_true(any(!is.na(cb_mod_pred_sar_log))) expect_true(any(!is.na(cb_mod_pred_sar_logit))) expect_true(any(!is.na(cb_mod_pred_sar_cloglog))) expect_true(identical(cb_mod_pred_link_id, cb_mod_pred_sar_id)) expect_false(identical(cb_mod_pred_link_log, cb_mod_pred_sar_log)) expect_false(identical(cb_mod_pred_link_logit, cb_mod_pred_sar_logit)) expect_false(identical(cb_mod_pred_link_cloglog, cb_mod_pred_sar_cloglog)) expect_true(all(cb_mod_pred_sar_log > 0)) expect_true(all(cb_mod_pred_sar_logit > 0)) expect_true(all(cb_mod_pred_sar_cloglog > 0)) expect_true(all(cb_mod_pred_sar_log < 1)) expect_true(all(cb_mod_pred_sar_logit < 1)) expect_true(all(cb_mod_pred_sar_cloglog < 1)) # Check that predict gives the same sar hat as the fitted model object. expect_true(all(predict(cb_mod_res_id, x = xmat, type = 'sar') == cb_mod_res_id$sar_hat)) expect_true(all(predict(cb_mod_res_log, x = xmat, type = 'sar') == cb_mod_res_log$sar_hat)) expect_true(all(predict(cb_mod_res_logit, x = xmat, type = 'sar') == cb_mod_res_logit$sar_hat)) expect_true(all(predict(cb_mod_res_cloglog, x = xmat, type = 'sar') == cb_mod_res_cloglog$sar_hat)) }) # Missing values ---- x_input_na <- c(NA, 0, 2, 3, NA, NA) dcb_na1 <- dchainbinom(x = x_input_na, s0 = 5, sar = 0.11, generations = 1) s0_input_na <- c(3, 3, 4, 5, 6, NA) dcb_na2 <- dchainbinom(x = 0:5, s0 = s0_input_na, sar = 0.11, generations = 1) sar_input_na <- c(NA, 0.2, 0.1, 0.5, 0.21, NA) dcb_na3 <- dchainbinom(x = 0:5, s0 = 3, sar = sar_input_na, generations = Inf) generations_input_na <- c(1, 2, 3, NA, Inf, NA) dcb_na4 <- dchainbinom(x = 0:5, s0 = 5, sar = 0.11, generations = generations_input_na) # One NA that causes all values to be NA because of recycling. dcb_na5 <- dchainbinom(x = NA, s0 = 5, sar = 0.11, generations = 2) dcb_na6 <- dchainbinom(x = 0:5, s0 = NA, sar = 0.11, generations = 2) dcb_na7 <- dchainbinom(x = NA, s0 = 5, sar = NA, generations = Inf) dcb_na8 <- dchainbinom(x = NA, s0 = 5, sar = 0.11, generations = NA) test_that("dchainbinom NA", { expect_true(all(is.na(dcb_na1) == is.na(x_input_na))) expect_true(all(is.na(dcb_na2) == is.na(s0_input_na))) expect_true(all(is.na(dcb_na3) == is.na(sar_input_na))) expect_true(all(is.na(dcb_na4) == is.na(generations_input_na))) expect_true(all(is.na(dcb_na5))) expect_true(all(is.na(dcb_na6))) expect_true(all(is.na(dcb_na7))) expect_true(all(is.na(dcb_na8))) }) rcb_na2 <- rchainbinom(n = 6, s0 = s0_input_na, sar = 0.11, generations = 2) rcb_na3 <- rchainbinom(n = 6, s0 = 5, sar = sar_input_na, generations = Inf) rcb_na4 <- rchainbinom(n = 6, s0 = 5, sar = 0.34, generations = generations_input_na) test_that("rchainbinom NA", { expect_true(all(is.na(rcb_na2) == is.na(s0_input_na))) expect_true(all(is.na(rcb_na3) == is.na(sar_input_na))) expect_true(all(is.na(rcb_na4) == is.na(generations_input_na))) }) ecb_na2 <- echainbinom(s0 = s0_input_na, sar = 0.11, generations = 2) ecb_na3 <- echainbinom(s0 = 5, sar = sar_input_na, generations = Inf) ecb_na4 <- echainbinom(s0 = 5, sar = 0.34, generations = generations_input_na) # One NA that causes all values to be NA because of recycling. ecb_na6 <- echainbinom(s0 = NA, sar = 0.41, generations = 1:4) ecb_na7 <- echainbinom(s0 = 5, sar = NA, generations = 1:4) ecb_na8 <- echainbinom(s0 = 1:4, sar = 0.41, generations = NA) test_that("echainbinom NA", { expect_true(all(is.na(ecb_na2) == is.na(s0_input_na))) expect_true(all(is.na(ecb_na3) == is.na(sar_input_na))) expect_true(all(is.na(ecb_na4) == is.na(generations_input_na))) expect_true(all(is.na(ecb_na6))) expect_true(all(is.na(ecb_na7))) expect_true(all(is.na(ecb_na8))) })