# Author: Quentin Grimonprez context("Encoding functions") ## common dataset set.seed(42) K <- 4 Tmax <- 10 PJK <- matrix(1 / 3, nrow = K, ncol = K) - diag(rep(1 / 3, K)) lambda_PJK <- c(1, 1, 1, 1) d_JK <- generate_Markov(n = 10, K = K, P = PJK, lambda = lambda_PJK, Tmax = Tmax) d_JK2 <- cut_data(d_JK, 10) ## test_that("compute_Uxij works with a simple basis of 1 function", { set.seed(42) m <- 1 # basis with 1 function: constant function = 1 between 0 and T max b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) # constant function = 1 between 0 and T max x <- d_JK2[d_JK2$id == 1, ] out <- compute_Uxij(x, phi, K) expectedOut <- rep(0, K) for (i in 1:K) { idx <- which(x$state == i) expectedOut[i] <- sum(x$time[idx + 1] - x$time[idx], na.rm = TRUE) } expect_length(out, K * m * m) expect_equal(out, expectedOut) }) test_that("compute_Uxij works with a simple basis of 2 functions", { skip_on_cran() m <- 2 # basis with 2 functions: 1st function: constant = 1 between 0 and Tmax/2 then 0. 2nd function: 0 then 1 I <- diag(rep(1, m)) b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) phi <- fd(I, b) x <- d_JK2[d_JK2$id == 1, ] out <- compute_Uxij(x, phi, K) expectedOut <- rep(0, K * m * m) for (i in 1:K) { idx <- which(x$state == i) idx1 <- idx[x$time[idx] <= 5] expectedOut[1 + (i - 1) * m * m] <- sum(pmin(x$time[idx1 + 1], 5) - x$time[idx1], na.rm = TRUE) idx2 <- idx[x$time[idx + 1] > 5] expectedOut[4 + (i - 1) * m * m] <- sum(x$time[idx2 + 1] - pmax(x$time[idx2], 5), na.rm = TRUE) } expect_length(out, K * m * m) expect_lte(max(abs(out - expectedOut)), 1e-5) }) test_that("compute_integral_U + fillU works with a simple basis of 1 function", { set.seed(42) m <- 1 # basis with 1 function: constant function = 1 between 0 and T max b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) # constant function = 1 between 0 and T max x <- d_JK2[d_JK2$id == 1, ] uniqueTime <- sort(unique(d_JK2$time)) index <- data.frame(seq_along(uniqueTime), row.names = uniqueTime) integrals <- compute_integral_U(phi, uniqueTime, verbose = FALSE) out <- fill_U(x, integrals, index, K, m) expectedOut <- rep(0, K) for (i in 1:K) { idx <- which(x$state == i) expectedOut[i] <- sum(x$time[idx + 1] - x$time[idx], na.rm = TRUE) } expect_length(out, K * m * m) expect_equal(out, expectedOut) }) test_that("compute_integral_U + fillU works with a simple basis of 2 functions", { skip_on_cran() m <- 2 # basis with 2 functions: 1st function: constant = 1 between 0 and Tmax/2 then 0. 2nd function: 0 then 1 I <- diag(rep(1, m)) b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) phi <- fd(I, b) x <- d_JK2[d_JK2$id == 1, ] uniqueTime <- sort(unique(d_JK2$time)) index <- data.frame(seq_along(uniqueTime), row.names = uniqueTime) integrals <- compute_integral_U(phi, uniqueTime, verbose = FALSE) out <- fill_U(x, integrals, index, K, m) expectedOut <- rep(0, K * m * m) for (i in 1:K) { idx <- which(x$state == i) idx1 <- idx[x$time[idx] <= 5] expectedOut[1 + (i - 1) * m * m] <- sum(pmin(x$time[idx1 + 1], 5) - x$time[idx1], na.rm = TRUE) idx2 <- idx[x$time[idx + 1] > 5] expectedOut[4 + (i - 1) * m * m] <- sum(x$time[idx2 + 1] - pmax(x$time[idx2], 5), na.rm = TRUE) } expect_length(out, K * m * m) expect_lte(max(abs(out - expectedOut)), 1e-5) }) oldcompute_Uxij <- function(x, phi, K) { nBasis <- phi$basis$nbasis aux <- rep(0, K * nBasis * nBasis) for (state in 1:K) { idx <- which(x$state == state) for (u in idx) { for (i in 1:nBasis) { for (j in 1:nBasis) { if (u < nrow(x)) { ind <- (state - 1) * nBasis * nBasis + (i - 1) * nBasis + j aux[ind] <- aux[ind] + integrate(function(t) { eval.fd(t, phi[i]) * eval.fd(t, phi[j]) }, lower = x$time[u], upper = x$time[u + 1], stop.on.error = FALSE )$value } } } } } return(aux) } test_that("refactor of compute_Uxij keeps the same results", { skip_on_cran() skip_on_ci() skip_on_covr() m <- 10 b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) I <- diag(rep(1, m)) phi <- fd(I, b) expectedOut <- by(d_JK2, d_JK2$id, function(x) { oldcompute_Uxij(x, phi, K) }) out <- by(d_JK2, d_JK2$id, function(x) { compute_Uxij(x, phi, K) }) expect_equal(out[[1]], expectedOut[[1]]) }) test_that("compute_Vxi works with a simple basis of 1 function", { m <- 1 # basis with 1 function:: constant function = 1 between 0 and T max b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) # constant function = 1 between 0 and T max x <- d_JK2[d_JK2$id == 1, ] out <- compute_Vxi(x, phi, K) expectedOut <- rep(0, K) for (i in 1:K) { idx <- which(x$state == i) expectedOut[i] <- sum(x$time[idx + 1] - x$time[idx], na.rm = TRUE) } expect_length(out, K * m) expect_equal(out, expectedOut) }) test_that("compute_Vxi works with a simple basis of 2 functions", { skip_on_cran() m <- 2 # basis with 2 functions: 1st function: constant = 1 between 0 and Tmax/2 then 0. 2nd function: 0 then 1 b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) x <- d_JK2[d_JK2$id == 1, ] out <- compute_Vxi(x, phi, K) expectedOut <- rep(0, K * m) for (i in 1:K) { idx <- which(x$state == i) idx1 <- idx[x$time[idx] <= 5] expectedOut[1 + (i - 1) * m] <- sum(pmin(x$time[idx1 + 1], 5) - x$time[idx1], na.rm = TRUE) idx2 <- idx[x$time[idx + 1] > 5] expectedOut[2 + (i - 1) * m] <- sum(x$time[idx2 + 1] - pmax(x$time[idx2], 5), na.rm = TRUE) } expect_length(out, K * m) expect_lte(max(abs(out - expectedOut)), 1e-5) }) test_that("compute_integral_V + fillV works with a simple basis of 1 function", { m <- 1 # basis with 1 function:: constant function = 1 between 0 and T max b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) # constant function = 1 between 0 and T max x <- d_JK2[d_JK2$id == 1, ] uniqueTime <- sort(unique(d_JK2$time)) index <- data.frame(seq_along(uniqueTime), row.names = uniqueTime) integrals <- compute_integral_V(phi, uniqueTime, verbose = FALSE) out <- fill_V(x, integrals, index, K, m) expectedOut <- rep(0, K) for (i in 1:K) { idx <- which(x$state == i) expectedOut[i] <- sum(x$time[idx + 1] - x$time[idx], na.rm = TRUE) } expect_length(out, K * m) expect_equal(out, expectedOut) }) test_that("compute_integral_V + fillV works with a simple basis of 2 functions", { skip_on_cran() m <- 2 # basis with 2 functions: 1st function: constant = 1 between 0 and Tmax/2 then 0. 2nd function: 0 then 1 b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 1) I <- diag(rep(1, m)) phi <- fd(I, b) x <- d_JK2[d_JK2$id == 1, ] uniqueTime <- sort(unique(d_JK2$time)) index <- data.frame(seq_along(uniqueTime), row.names = uniqueTime) integrals <- compute_integral_V(phi, uniqueTime, verbose = FALSE) out <- fill_V(x, integrals, index, K, m) expectedOut <- rep(0, K * m) for (i in 1:K) { idx <- which(x$state == i) idx1 <- idx[x$time[idx] <= 5] expectedOut[1 + (i - 1) * m] <- sum(pmin(x$time[idx1 + 1], 5) - x$time[idx1], na.rm = TRUE) idx2 <- idx[x$time[idx + 1] > 5] expectedOut[2 + (i - 1) * m] <- sum(x$time[idx2 + 1] - pmax(x$time[idx2], 5), na.rm = TRUE) } expect_length(out, K * m) expect_lte(max(abs(out - expectedOut)), 1e-5) }) test_that("computeVmatrix keeps the id order", { all_dat_P1S1 <- data.frame(state = c(1, 2, 1), time = c(0, 0.5, 1), id = rep("P1S1", 3)) all_dat_P1S2 <- data.frame(state = c(1, 2, 1), time = c(0, 0.4, 1), id = rep("P1S2", 3)) all_dat_P1S3 <- data.frame(state = c(1, 2, 1), time = c(0, 0.6, 1), id = rep("P1S3", 3)) all_dat_P2S1 <- data.frame(state = c(1, 3, 1), time = c(0, 0.5, 1), id = rep("P2S1", 3)) all_dat_P2S2 <- data.frame(state = c(1, 3, 1), time = c(0, 0.4, 1), id = rep("P2S2", 3)) all_dat_P2S3 <- data.frame(state = c(1, 3, 1), time = c(0, 0.6, 1), id = rep("P2S3", 3)) all_dat_P3S1 <- data.frame(state = c(3, 1, 1), time = c(0, 0.5, 1), id = rep("P3S1", 3)) all_dat_P3S2 <- data.frame(state = c(3, 1, 1), time = c(0, 0.4, 1), id = rep("P3S2", 3)) all_dat_P3S3 <- data.frame(state = c(3, 1, 1), time = c(0, 0.6, 1), id = rep("P3S3", 3)) # Original dataset all_dat_a <- rbind(all_dat_P1S1, all_dat_P1S2, all_dat_P1S3, all_dat_P2S1, all_dat_P2S2, all_dat_P2S3, all_dat_P3S1, all_dat_P3S2, all_dat_P3S3) all_dat_b <- rbind(all_dat_P2S1, all_dat_P2S2, all_dat_P2S3, all_dat_P3S1, all_dat_P3S2, all_dat_P3S3, all_dat_P1S1, all_dat_P1S2, all_dat_P1S3) uniqueIdA <- unique(all_dat_a$id) uniqueIdB <- unique(all_dat_b$id) basisobj <- create.bspline.basis(c(0, 1), nbasis = 6, norder = 1) Va <- computeVmatrix(all_dat_a, basisobj, K = 3, uniqueId = uniqueIdA, nCores = 1, verbose = FALSE) Vb <- computeVmatrix(all_dat_b, basisobj, K = 3, uniqueId = uniqueIdB, nCores = 1, verbose = FALSE) expect_equal(nrow(Va), 9) expect_equal(ncol(Va), 6 * 3) expect_equal(nrow(Vb), 9) expect_equal(ncol(Vb), 6 * 3) expect_equal(Va, Vb[c(7, 8, 9, 1, 2, 3, 4, 5, 6), ]) }) test_that("computeUmatrix keeps the id order", { all_dat_P1S1 <- data.frame(state = c(1, 2, 1), time = c(0, 0.5, 1), id = rep("P1S1", 3)) all_dat_P1S2 <- data.frame(state = c(1, 2, 1), time = c(0, 0.4, 1), id = rep("P1S2", 3)) all_dat_P1S3 <- data.frame(state = c(1, 2, 1), time = c(0, 0.6, 1), id = rep("P1S3", 3)) all_dat_P2S1 <- data.frame(state = c(1, 3, 1), time = c(0, 0.5, 1), id = rep("P2S1", 3)) all_dat_P2S2 <- data.frame(state = c(1, 3, 1), time = c(0, 0.4, 1), id = rep("P2S2", 3)) all_dat_P2S3 <- data.frame(state = c(1, 3, 1), time = c(0, 0.6, 1), id = rep("P2S3", 3)) all_dat_P3S1 <- data.frame(state = c(3, 1, 1), time = c(0, 0.5, 1), id = rep("P3S1", 3)) all_dat_P3S2 <- data.frame(state = c(3, 1, 1), time = c(0, 0.4, 1), id = rep("P3S2", 3)) all_dat_P3S3 <- data.frame(state = c(3, 1, 1), time = c(0, 0.6, 1), id = rep("P3S3", 3)) # Original dataset all_dat_a <- rbind(all_dat_P1S1, all_dat_P1S2, all_dat_P1S3, all_dat_P2S1, all_dat_P2S2, all_dat_P2S3, all_dat_P3S1, all_dat_P3S2, all_dat_P3S3) all_dat_b <- rbind(all_dat_P2S1, all_dat_P2S2, all_dat_P2S3, all_dat_P3S1, all_dat_P3S2, all_dat_P3S3, all_dat_P1S1, all_dat_P1S2, all_dat_P1S3) uniqueIdA <- unique(all_dat_a$id) uniqueIdB <- unique(all_dat_b$id) basisobj <- create.bspline.basis(c(0, 1), nbasis = 6, norder = 1) Ua <- computeUmatrix(all_dat_a, basisobj, K = 3, uniqueId = uniqueIdA, nCores = 1, verbose = FALSE) Ub <- computeUmatrix(all_dat_b, basisobj, K = 3, uniqueId = uniqueIdB, nCores = 1, verbose = FALSE) expect_equal(nrow(Ua), 9) expect_equal(ncol(Ua), 6 * 6 * 3) expect_equal(nrow(Ub), 9) expect_equal(ncol(Ub), 6 * 6 * 3) expect_equal(Ua, Ub[c(7, 8, 9, 1, 2, 3, 4, 5, 6), ]) }) test_that("compute_optimal_encoding throws error", { set.seed(42) # create basis object m <- 10 b <- create.bspline.basis(c(0, 1), nbasis = m, norder = 4) expect_error(compute_optimal_encoding(d_JK2, 3, nCores = 1, verbose = TRUE), regexp = "basisobj is not a basis object.") expect_error(compute_optimal_encoding(d_JK2, b, nCores = 0, verbose = TRUE), regexp = "nCores must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, nCores = 2.5, verbose = TRUE), regexp = "nCores must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, nCores = NA, verbose = TRUE), regexp = "nCores must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, nCores = NaN, verbose = TRUE), regexp = "nCores must be an integer > 0.") expect_error(compute_optimal_encoding(d_JK2, b, nCores = 1, verbose = 2), regexp = "verbose must be either TRUE or FALSE.") }) test_that("compute_optimal_encoding works", { set.seed(42) n <- 200 Tmax <- 1 K <- 2 m <- 10 d <- generate_2State(n) dT <- cut_data(d, Tmax) row.names(dT) <- NULL b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) expect_silent(fmca <- compute_optimal_encoding(dT, b, computeCI = FALSE, method = "parallel", nCores = 1, verbose = FALSE)) expect_type(fmca, "list") expect_named(fmca, c("eigenvalues", "alpha", "pc", "F", "G", "V", "basisobj", "label", "pt", "runTime")) # eigenvalues expect_length(fmca$eigenvalues, K * m) trueEigVal <- 1 / ((1:m) * (2:(m + 1))) expect_lte(max(abs(fmca$eigenvalues[1:m] - trueEigVal)), 0.01) # alpha expect_type(fmca$alpha, "list") expect_length(fmca$alpha, m * K) expect_equal(dim(fmca$alpha[[1]]), c(m, K)) # pc expect_equal(dim(fmca$pc), c(n, m * K)) # F expect_equal(dim(fmca$F), c(m * K, m * K)) # G expect_equal(dim(fmca$G), c(m * K, m * K)) # V expect_equal(dim(fmca$V), c(n, m * K)) # basisobj expect_equal(fmca$basisobj, b) # label expect_equal(fmca$label, data.frame(label = 0:1, code = 1:2)) }) skip_on_cran() ## data and results used in the next tests set.seed(42) n <- 10 Tmax <- 1 K <- 2 m <- 5 d <- generate_2State(n) dT <- cut_data(d, Tmax) row.names(dT) <- NULL b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) fmca <- compute_optimal_encoding(dT, b, method = "parallel", nCores = 1, computeCI = FALSE, verbose = FALSE) ## test_that("summary.cfda does not produce warnings/errors", { expect_warning(summary(fmca), regexp = NA) expect_error(summary(fmca), regexp = NA) }) test_that("print.cfda does not produce warnings/errors", { expect_warning(print(fmca), regexp = NA) expect_error(print(fmca), regexp = NA) }) test_that("compute_optimal_encoding works verbose", { skip_on_cran() expect_output(encoding <- compute_optimal_encoding(dT[dT$id <= 10, ], b, computeCI = FALSE, nCores = 1, verbose = TRUE)) }) test_that("compute_optimal_encoding throws a warning when the basis is not well suited", { skip_on_cran() data_msm <- data.frame(id = rep(1:2, each = 3), time = c(0, 3, 5, 0, 4, 5), state = c(1, 2, 2, 1, 2, 2)) b <- create.bspline.basis(c(0, 5), nbasis = 3, norder = 2) expect_warning({ fmca <- compute_optimal_encoding(data_msm, b, computeCI = FALSE, nCores = 1) }, regexp = paste( "The F matrix contains at least one column of 0s.", "At least one state is not present in the support of one basis function.", "Corresponding coefficients in the alpha output will have a 0 value." ), fixed = TRUE ) }) test_that("get_encoding throws error", { fmca <- list(alpha = rep(1, 5)) class(fmca) <- "fmca" expect_error(get_encoding(3), regexp = "x must be a fmca object.") expect_error(get_encoding(fmca, harm = c(1, 2)), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = 2.5), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = 0), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = NA), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = NaN), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = 10), regexp = "harm must be an integer between 1 and the number of components.") expect_error(get_encoding(fmca, harm = 1, nx = 0), regexp = "nx must be a positive integer.") expect_error(get_encoding(fmca, harm = 1, nx = c(3, 2)), regexp = "nx must be a positive integer.") expect_error(get_encoding(fmca, harm = 1, nx = NA), regexp = "nx must be a positive integer.") expect_error(get_encoding(fmca, harm = 1, nx = NaN), regexp = "nx must be a positive integer.") }) test_that("get_encoding works", { out <- get_encoding(fmca, fdObject = TRUE) expect_s3_class(out, "fd") out <- get_encoding(fmca, harm = 3, fdObject = TRUE) expect_s3_class(out, "fd") out <- get_encoding(fmca, fdObject = FALSE) expect_named(out, c("x", "y")) expect_equal(dim(out$y), c(128, 2)) expect_length(out$x, 128) out <- get_encoding(fmca, harm = 3, fdObject = FALSE) expect_named(out, c("x", "y")) expect_equal(dim(out$y), c(128, 2)) expect_length(out$x, 128) out <- get_encoding(fmca, fdObject = FALSE, nx = 100) expect_named(out, c("x", "y")) expect_equal(dim(out$y), c(100, 2)) expect_length(out$x, 100) }) test_that("plot.fmca does not produce warnings", { expect_warning(plot(fmca), regexp = NA) expect_warning(plot(fmca, harm = 3, col = c("red", "blue")), regexp = NA) expect_warning(plot(fmca, addCI = TRUE), regexp = NA) }) test_that("plotComponent throws error", { fmca <- list(pc = matrix(nrow = 3, ncol = 5)) class(fmca) <- "fmca" expect_error(plotComponent(3), regexp = "x must be a fmca object.") expect_error(plotComponent(fmca, comp = 1), regexp = "comp must be a vector of positive integers of length 2.") expect_error(plotComponent(fmca, comp = c(1, NA)), regexp = "comp must be a vector of positive integers of length 2.") expect_error(plotComponent(fmca, comp = c(1, NaN)), regexp = "comp must be a vector of positive integers of length 2.") expect_error(plotComponent(fmca, comp = c(1, 1.5)), regexp = "comp must be a vector of positive integers of length 2.") expect_error(plotComponent(fmca, comp = c(1, 6)), regexp = "comp must be a vector of positive integers of length 2.") }) test_that("plotComponent does not produce warnings", { expect_warning(plotComponent(fmca, addNames = TRUE), regexp = NA) expect_warning(plotComponent(fmca, comp = c(2, 3), addNames = FALSE), regexp = NA) expect_warning(plotComponent(fmca, shape = 23), regexp = NA) }) test_that("plotEigenvalues throws error", { expect_error(plotEigenvalues(2), regexp = "x must be a fmca object.") }) test_that("plotEigenvalues does not produce warnings", { expect_warning(plotEigenvalues(fmca, cumulative = FALSE, normalize = FALSE), regexp = NA) expect_warning(plotEigenvalues(fmca, cumulative = FALSE, normalize = TRUE), regexp = NA) expect_warning(plotEigenvalues(fmca, cumulative = TRUE, normalize = FALSE), regexp = NA) expect_warning(plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE, shape = 23), regexp = NA) })