data_sf <- simulate_data( N = 10000, seed = 123, alpha_uz = 1, beta_uy = 1, treatment_effects = 1 ) result_sf <- causens_sf(Z ~ X.1 + X.2 + X.3, "Y", data = data_sf, c1 = 0.25, c0 = 0.25, bootstrap = TRUE ) summary_table_sf <- capture_output(summary(result_sf)) test_that("summary.causens_sf produces correct output", { expect_equal(summary_table_sf, paste( "Model:", "Z ~ X.1 + X.2 + X.3 ", "", "Estimate Std.Error 95% C.I. ", "1.01 0.0285 (0.947, 1.06) ", sep = "\n" )) }) data_mc <- simulate_data( N = 10000, seed = 123, y_type = "binary", alpha_uz = 1, beta_uy = 1, treatment_effects = 1 ) result_mc <- causens_monte_carlo("Y", "Z", c("X.1", "X.2", "X.3"), data = data_mc, method = "Monte Carlo" ) summary_table_mc <- capture_output(summary(result_mc)) test_that("summary.monte_carlo_causens produces correct output", { expect_equal(summary_table_mc, paste( "Model:", "Y ~ Z + X.1 + X.2 + X.3 ", "", "Estimate Std.Error 95% C.I. ", "1.22 0.29 (0.573, 1.87) ", sep = "\n" )) })