testthat::test_that("barycentric_projection works, p = 2 tensor", { causalOT:::torch_check() testthat::skip_on_cran() set.seed(23483) n <- 2^5 pp <- 6 overlap <- "low" design <- "A" estimate <- "ATE" power <- 2 #### get simulation functions #### data <- causalOT::Hainmueller$new(n = n, p = pp, design = design, overlap = overlap) data$gen_data() weights <- causalOT::calc_weight(x = data, z = NULL, y = NULL, estimand = estimate, method = "NNM") df <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_silent(fit <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights)) testthat::expect_equal(fit$a, weights@w0) testthat::expect_equal(fit$b, weights@w1) testthat::expect_equal(fit$p, power) # check fit works if provide weights as a vector w <- c(weights@w0, weights@w1)[order(order(data$get_z()))] fit2 <- causalOT:::barycentric_projection(y ~ ., data = df, weight = w) fit3 <- fit fit3$data@weights <- w testthat::expect_equal(fit3, fit2) # for same data preds <- causalOT:::predict.bp(fit) testthat::expect_equal(preds, predict(fit)) # make sure S3 registered # compare to online formulation causalOT:::rkeops_check() if(utils::packageVersion("rkeops") >= pkg_vers_number("2.0") ) { rkeops::rkeops_use_float64() } else { rkeops::compile4float64() } mess <- testthat::capture_output(fito <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, cost.online = "online")) mess <- testthat::capture_output(predo <- predict(fito)) testthat::expect_equal(preds, predo, tol = 1e-5) # compare to manual est y_hat <- rep(NA_real_, causalOT:::get_n(fit$data)) y0 <- causalOT:::get_y0(fit$data) y1 <- causalOT:::get_y1(fit$data) x0 <- causalOT:::get_x0(fit$data) x1 <- causalOT:::get_x1(fit$data) z <- causalOT:::get_z(fit$data) c_pot <- fit$potentials$f_aa t_pot <- fit$potentials$g_bb C_00 <- causalOT:::cost(x0,x0, power, cost_function = fit$cost_function) C_11 <- causalOT:::cost(x1,x1, power, cost_function = fit$cost_function) lambda <- fit$penalty w0_log <- causalOT:::log_weights(weights@w0) w1_log <- causalOT:::log_weights(weights@w1) eta_00 <- c_pot/lambda + w0_log - C_00$data/lambda y_hat[z == 0] <- as.matrix(eta_00$log_softmax(2)$exp()) %*% y0 eta_11 <- t_pot/lambda + w1_log - C_11$data/lambda y_hat[z == 1] <- as.matrix(eta_11$log_softmax(2)$exp()) %*% y1 testthat::expect_equal(y_hat, preds) # for new df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) preds2 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z()) testthat::expect_equal(preds, preds2, tol = 1e-5) preds2o <- causalOT:::predict.bp(fito, newdata=df.new, source.sample = data$get_z()) testthat::expect_equal(preds, preds2o, tol = 1e-5) data$gen_data() df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_silent(preds3 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z())) fit_debias <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, debias = TRUE) predict_debias <- predict(fit_debias) testthat::expect_equivalent(df$y, predict_debias) }) testthat::test_that("barycentric_projection works, p = 1", { causalOT:::torch_check() testthat::skip_on_cran() set.seed(23483) n <- 2^5 p <- 6 power <- 1 overlap <- "low" design <- "A" estimate <- "ATE" #### get simulation functions #### data <- causalOT::Hainmueller$new(n = n, p = p, design = design, overlap = overlap) data$gen_data() weights <- causalOT::calc_weight(x = data, z = NULL, y = NULL, estimand = estimate, method = "NNM") df <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_silent(fit <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power)) testthat::expect_equal(fit$a, weights@w0) testthat::expect_equal(fit$b, weights@w1) testthat::expect_equal(fit$p, power) # check fit works if provide weights as a vector w <- c(weights@w0, weights@w1)[order(order(data$get_z()))] fit2 <- causalOT:::barycentric_projection(y ~ ., data = df, weight = w, p = power) fit3 <- fit fit3$data@weights <- w testthat::expect_equal(fit3, fit2) # for same data preds <- causalOT:::predict.bp(fit) testthat::expect_equal(preds, predict(fit)) # make sure S3 registered causalOT:::rkeops_check() # give error for the p = 1 online if(utils::packageVersion("rkeops") >= pkg_vers_number("2.0") ) { rkeops::rkeops_use_float64() } else { rkeops::compile4float64() } testthat::expect_warning(fito <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, cost.online = "online")) testthat::expect_error(predo <- predict(fito)) fun <- function(x1, x2, p) { ((1/p) * torch::torch_cdist(x1 = torch::torch_tensor(x1, dtype = torch::torch_double()), x2 = torch::torch_tensor(x2, dtype = torch::torch_double()), p = p)^p)$contiguous() } predo <- predict(fito, cost_function = fun) testthat::expect_equal(preds, predo) # compare to manual est y_hat <- rep(NA_real_, causalOT:::get_n(fit$data)) y0 <- causalOT:::get_y0(fit$data) y1 <- causalOT:::get_y1(fit$data) x0 <- causalOT:::get_x0(fit$data) x1 <- causalOT:::get_x1(fit$data) z <- causalOT:::get_z(fit$data) c_pot <- fit$potentials$f_aa t_pot <- fit$potentials$g_bb C_00 <- causalOT:::cost(x0,x0, power, cost_function = fit$cost_function) C_11 <- causalOT:::cost(x1,x1, power, cost_function = fit$cost_function) lambda <- fit$penalty w0_log <- causalOT:::log_weights(weights@w0) w1_log <- causalOT:::log_weights(weights@w1) eta_00 <- c_pot/lambda + w0_log - C_00$data/lambda y_hat[z == 0] <- apply(as.matrix(eta_00$log_softmax(2)$exp()), 1, function(w) matrixStats::weightedMedian(x = y0, w = w)) eta_11 <- t_pot/lambda + w1_log - C_11$data/lambda y_hat[z == 1] <- apply(as.matrix(eta_11$log_softmax(2)$exp()), 1, function(w) matrixStats::weightedMedian(x = y1, w = w)) testthat::expect_equal(y_hat, preds) # for new df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) preds2 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z()) testthat::expect_equal(preds, preds2) data$gen_data() df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_silent(preds3 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z())) fit_debias <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, debias = TRUE) predict_debias <- predict(fit_debias) testthat::expect_equivalent(df$y, predict_debias) }) testthat::test_that("barycentric_projection works, p = 3", { causalOT:::torch_check() testthat::skip_on_cran() set.seed(23483) n <- 2^5 p <- 6 power <- 3L overlap <- "low" design <- "A" estimate <- "ATE" #### get simulation functions #### data <- causalOT::Hainmueller$new(n = n, p = p, design = design, overlap = overlap) data$gen_data() weights <- causalOT::calc_weight(x = data, z = NULL, y = NULL, estimand = estimate, method = "NNM") df <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_silent(fit <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power)) testthat::expect_equal(fit$a, weights@w0) testthat::expect_equal(fit$b, weights@w1) testthat::expect_equal(fit$p, power) # check fit works if provide weights as a vector w <- c(weights@w0, weights@w1)[order(order(data$get_z()))] fit2 <- testthat::expect_silent(causalOT:::barycentric_projection(y ~ ., data = df, weight = w, p = power)) fit3 <- fit fit3$data@weights <- w testthat::expect_equal(fit3, fit2) # for same data testthat::expect_warning(preds <- causalOT:::predict.bp(fit)) testthat::expect_warning(preds2 <- predict(fit)) testthat::expect_equal(preds, preds2) # make sure S3 registered causalOT:::rkeops_check() if(utils::packageVersion("rkeops") >= pkg_vers_number("2.0") ) { rkeops::rkeops_use_float64() } else { rkeops::compile4float64() } mess <- testthat::capture_output((fito <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, cost.online = "online"))) testthat::expect_error(causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = as.numeric(power), cost.online = "online")) mess <- testthat::capture_output(testthat::expect_warning(predo <- predict(fito))) testthat::expect_equal(preds, predo, tol = 1e-5) # compare to manual est closure_test <- function() { opt$zero_grad() n <- length(y_source) m <- length(y_targ) dist_mat <- fit$cost_function(y_source$view(c(n,1)), y_targ$view(c(m,1)), power) col_loss <- (dist_mat * wt)$sum(2) # tot_loss <- col_loss$dot(exp(g/eps + b_log)) tot_loss <- col_loss$sum() tot_loss$backward() tot_loss } y_hat <- rep(NA_real_, causalOT:::get_n(fit$data)) y0 <- causalOT:::get_y0(fit$data) y1 <- causalOT:::get_y1(fit$data) x0 <- causalOT:::get_x0(fit$data) x1 <- causalOT:::get_x1(fit$data) z <- causalOT:::get_z(fit$data) c_pot <- fit$potentials$f_aa t_pot <- fit$potentials$g_bb C_00 <- causalOT:::cost(x0,x0, power, cost_function = fit$cost_function) C_11 <- causalOT:::cost(x1,x1, power, cost_function = fit$cost_function) eps <- fit$penalty w0_log <- causalOT:::log_weights(weights@w0) w1_log <- causalOT:::log_weights(weights@w1) eta_00 <- (c_pot/eps + w0_log) - C_00$data/eps wt <- eta_00$log_softmax(2)$exp() b_log <- torch::torch_tensor(w0_log, dtype = torch::torch_double()) g <- torch::torch_tensor(c_pot, dtype = torch::torch_double()) y_targ <- torch::torch_tensor(y0, dtype = torch::torch_double()) y_source <- torch::torch_zeros_like(y_targ, dtype = torch::torch_double(), requires_grad = TRUE) opt <- torch::optim_lbfgs(y_source) for(i in 1:5) { loss <- opt$step(closure_test) # print(loss) } y_hat[z == 0] <- as.numeric(y_source$detach()) eta_11 <- t_pot/eps + w1_log - C_11$data/eps wt <- eta_11$log_softmax(2)$exp() b_log <- torch::torch_tensor(w1_log, dtype = torch::torch_double()) g <- torch::torch_tensor(t_pot, dtype = torch::torch_double()) y_targ <- torch::torch_tensor(y1, dtype = torch::torch_double()) y_source <- torch::torch_zeros_like(y_targ, dtype = torch::torch_double(), requires_grad = TRUE) opt <- torch::optim_lbfgs(y_source) for(i in 1:5) { loss <- opt$step(closure_test) # print(loss) } y_hat[z == 1] <- as.numeric(y_source$detach()) testthat::expect_equal(y_hat, preds) # for new df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_warning(preds2 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z())) testthat::expect_equal(preds, preds2) data$gen_data() df.new <- data.frame(y = data$get_y(), z = data$get_z(), data$get_x()) testthat::expect_warning(preds3 <- causalOT:::predict.bp(fit, newdata=df.new, source.sample = data$get_z())) fit_debias <- causalOT:::barycentric_projection(y ~ ., data = df, weight = weights, p = power, debias = TRUE) predict_debias <- predict(fit_debias) testthat::expect_equivalent(df$y, predict_debias) })