# ----- GLM ----- #' Generate Mock Data for Generalized Linear Model (GLM) in Guassian Family #' #' This function creates a mock dataset suitable for testing Generalized Linear Model (GLM) in Guassian Family. #' It generates covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). #' #' @param seed An integer value to set the random seed for reproducibility. Default is 1. #' #' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `Y` (response). mock_glm_gaussian_data <- function(seed = 1) { set.seed(seed) n <- 10 return(data.frame( X1 = rnorm(n), X2 = rnorm(n), X3 = rnorm(n), Y = rnorm(n) )) } #' Mock Initialization Object for Catalytic Generalized Linear Model (GLM) in Gaussian Family #' #' This function sets up a mock a initialization object for catalytic Generalized Linear Model (GLM) #' in Guassian family using `mocked_glm_data` as input. It prepares the required data and parameters to initialize the #' `cat_glm_initialization` function with a predefined model structure, specifying the #' response and predictor variables. #' #' @param mocked_glm_gaussian_data A data frame with mock data specifically formatted for catalytic GLM initialization in Gaussian family. #' It should contain covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). This data serves as the input for initializing the catalytic GLM. #' @param ... Additional arguments passed to the `cat_glm_initialization` function. #' #' @return A structured list or object from `cat_glm_initialization`, set up with the provided mock data and model parameters. #' The model includes all obervation data and is configured to generate synthetic data #' with a sample size specified by `syn_size`. More details on `?cat_glm_initialization`. mock_cat_glm_gaussian_initialization <- function(mocked_glm_gaussian_data, ...) { return( cat_glm_initialization( formula = Y ~ 1, family = gaussian, data = mocked_glm_gaussian_data, syn_size = 100, ... ) ) } #' Generate Mock Data for Generalized Linear Model (GLM) in Binomial Family #' #' This function creates a mock dataset suitable for testing Generalized Linear Model (GLM) in Binomial Family. #' It generates covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). #' #' @param seed An integer value to set the random seed for reproducibility. Default is 1. #' #' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `Y` (response). mock_glm_binomial_data <- function(seed = 1) { set.seed(seed) n <- 10 return(data.frame( X1 = rnorm(n), X2 = rnorm(n), X3 = rnorm(n), Y = as.integer(rbinom(n, 1, 0.5)) )) } #' Mock Initialization Object for Catalytic Generalized Linear Model (GLM) in Binomial Family #' #' This function sets up a mock a initialization object for catalytic Generalized Linear Model (GLM) #' in Binomial family using `mocked_glm_data` as input. It prepares the required data and parameters to initialize the #' `cat_glm_initialization` function with a predefined model structure, specifying the #' response and predictor variables. #' #' @param mocked_glm_binomial_data A data frame with mock data specifically formatted for catalytic GLM initialization in Binomial family. #' It should contain covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). This data serves as the input for initializing the catalytic GLM. #' @param ... Additional arguments passed to the `cat_glm_initialization` function. #' #' @return A structured list or object from `cat_glm_initialization`, set up with the provided mock data and model parameters. #' The model includes all obervation data and is configured to generate synthetic data #' with a sample size specified by `syn_size`. More details on `?cat_glm_initialization`. mock_cat_glm_binomial_initialization <- function(mocked_glm_binomial_data, ...) { return( cat_glm_initialization( formula = Y ~ 1, family = binomial, data = mocked_glm_binomial_data, syn_size = 100, ... ) ) } # ----- COX ----- #' Generate Mock Data for Cox Proportional Hazards Model #' #' This function creates a mock dataset suitable for testing Cox proportional hazards models. #' It generates covariates (`X1`, `X2`, `X3`), a survival time (`time`), and a censoring indicator (`status`). #' #' @param seed An integer value to set the random seed for reproducibility. Default is 1. #' #' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `time` (survival time), #' and `status` (censoring indicator, where 1 indicates an event and 0 indicates censoring). mock_cox_data <- function(seed = 1) { set.seed(seed) n <- 10 return(data.frame( X1 = rnorm(n), X2 = rnorm(n), X3 = rnorm(n), time = runif(n), status = rbinom(n, 1, 0.5) )) } #' Mock Initialization Object for Catalytic Cox Proportional Hazards Model (COX) #' #' This function sets up a mock a initialization object for catalytic Cox Proportional Hazards Model (COX) using #' `mocked_cox_data` as input. It prepares the required data and parameters to initialize the #' `cat_cox_initialization` function with a predefined model structure, specifying the #' response and predictor variables. #' #' @param mocked_cox_data A data frame with mock data specifically formatted for catalytic COX initialization. #' It should contain columns for fixed effects (`X1`, `X2`, `X3`), a survival time (`time`), #' and a censoring indicator (`status`). This data serves as the input for initializing the catalytic COX. #' @param ... Additional arguments passed to the `cat_cox_initialization` function. #' #' @return A structured list or object from `cat_cox_initialization`, set up with the provided mock data and model parameters. #' The model includes all obervation data and is configured to generate synthetic data #' with a sample size specified by `syn_size`. More details on `?cat_cox_initialization`. mock_cat_cox_initialization <- function(mocked_cox_data, ...) { return( cat_cox_initialization( formula = survival::Surv(time, status) ~ 1, data = mocked_cox_data, syn_size = 100, ... ) ) } # ----- LMM ----- #' Generate Mock Data for Linear Mixed Model #' #' This function creates a mock dataset for testing a linear mixed model, with both fixed #' and random effect variables, as well as a grouping factor. #' #' @param seed An integer value to set the random seed for reproducibility. Default is 1. #' #' @return A data frame containing columns `X1`, `X2`, `X3` (fixed effects), `Y` (response variable), #' `Z1`, `Z2`, `Z3` (random effects), and `group` (grouping factor). mock_lmm_data <- function(seed = 1) { set.seed(seed) n <- 10 return(data.frame( X1 = rnorm(n), X2 = rnorm(n), X3 = rnorm(n), Y = rnorm(n), Z1 = rnorm(n), Z2 = rnorm(n), Z3 = rnorm(n), group = sample(1:3, n, replace = TRUE) )) } #' Mock Initialization Object for Catalytic Linear Mixed Model (LMM) #' #' This function sets up a mock a initialization object for catalytic linear mixed models (LMM) using #' `mocked_lmm_data` as input. It prepares the required data and parameters to initialize the #' `cat_lmm_initialization` function with a predefined model structure, specifying the #' response and predictor variables. #' #' @param mocked_lmm_data A data frame with mock data specifically formatted for catalytic LMM initialization. #' It should contain columns for fixed effects (`X1`, `X2`, `X3`), random effects (`Z1`, `Z2`, `Z3`), #' the response variable (`Y`), and a grouping factor (`group`). This data serves as the input #' for initializing the catalytic LMM. #' @param ... Additional arguments passed to the `cat_lmm_initialization` function. #' #' @return A structured list or object from `cat_lmm_initialization`, set up with the provided mock data and model parameters. #' The model includes both fixed and random effects and is configured to generate synthetic data #' with a sample size specified by `syn_size`. More details on `?cat_lmm_initialization`. mock_cat_lmm_initialization <- function(mocked_lmm_data, ...) { return(cat_lmm_initialization( formula = Y ~ X1 + X2 + X3, data = mocked_lmm_data, x_cols = c("X1", "X2", "X3"), z_cols = c("Z1", "Z2", "Z3"), y_col = c("Y"), group_col = c("group"), syn_size = 100, ... )) }