library(caret) test_that('glmnet classification', { skip_on_cran() set.seed(1) tr_dat <- twoClassSim(200) te_dat <- twoClassSim(200) set.seed(2) class_trim <- train(Class ~ ., data = tr_dat, method = "glmnet", tuneGrid = data.frame(lambda = .1, alpha = .5), trControl = trainControl(method = "none", classProbs = TRUE, trim = TRUE)) set.seed(2) class_notrim <- train(Class ~ ., data = tr_dat, method = "glmnet", tuneGrid = data.frame(lambda = .1, alpha = .5), trControl = trainControl(method = "none", classProbs = TRUE, trim = FALSE)) expect_equal(predict(class_trim, te_dat), predict(class_notrim, te_dat)) expect_equal(predict(class_trim, te_dat, type = "prob"), predict(class_notrim, te_dat, type = "prob")) expect_less_than(object.size(class_trim)-object.size(class_notrim), 0) }) test_that('glmnet regression', { skip_on_cran() set.seed(1) tr_dat <- SLC14_1(200) te_dat <- SLC14_1(200) set.seed(2) reg_trim <- train(y ~ ., data = tr_dat, method = "glmnet", tuneGrid = data.frame(lambda = .1, alpha = .5), trControl = trainControl(method = "none", trim = TRUE)) set.seed(2) reg_notrim <- train(y ~ ., data = tr_dat, method = "glmnet", tuneGrid = data.frame(lambda = .1, alpha = .5), trControl = trainControl(method = "none", trim = FALSE)) expect_equal(predict(reg_trim, te_dat), predict(reg_notrim, te_dat)) expect_less_than(object.size(reg_trim)-object.size(reg_notrim), 0) })