context('misc functions') test_that("R2 and RMSE are calculating correctly", { pred <- runif(25) obs <- runif(25) expect_equal(R2(pred, obs), cor(obs, pred)^2) expect_equal(RMSE(pred, obs), sqrt(mean((pred - obs)^2))) }) test_that("auc calculation is > .5 when Xs provide prediction", { skip_if_not_installed("MLmetrics") skip_if_not_installed("earth") skip_if_not_installed("mda") trCntlListMulti <- trainControl( method = "cv", number = 3, verboseIter = FALSE, classProbs = TRUE, summaryFunction = multiClassSummary ) set.seed(3453) knnFit <- train(Species ~ ., data = iris, method = "knn", trControl = trCntlListMulti) expect_true(all(knnFit$resample$AUC > .5)) library(caret) set.seed(1) tr_dat <- twoClassSim(200) te_dat <- tr_dat tr_dat$Class = factor(tr_dat$Class, levels = rev(levels(te_dat$Class))) modle <- train( Class ~ ., data = te_dat, method = "fda", tuneLength = 10, metric = "ROC", trControl = trainControl(classProbs = TRUE, summaryFunction = twoClassSummary) ) expect_true(all(modle$resample$AUC > .5)) })