test_that("tsne_sdm", { skip_on_cran() sa <- sdm_area(parana, cell_size = 10000, crs = 6933) |> add_predictors(bioc) |> select_predictors(c("bio1", "bio4", "bio12")) |> add_scenarios() expect_warning(oc <- occurrences_sdm(occ, crs = 6933) |> join_area(sa) |> input_sdm(sa) |> data_clean()) i <- pseudoabsences(oc, method = "bioclim", th = 0) expect_no_error(p <- tsne_sdm(i)) expect_true(class(p) == "list") expect_true(names(p) == species_names(i)) expect_true(ggplot2::is_ggplot(p[[1]][[1]])) expect_error(expect_warning(tsne_sdm(i$occurrences))) i <- oc |> vif_predictors() |> pseudoabsences(oc, method = "bioclim", th = 0, variables_selected = "vif") expect_no_error(p <- tsne_sdm(i, variables_selected = "vif")) expect_true(class(p) == "list") expect_true(names(p) == species_names(i)) expect_true(ggplot2::is_ggplot(p[[1]][[1]])) expect_error(expect_warning(tsne_sdm(i$occurrences))) i <- oc |> pca_predictors() |> pseudoabsences(oc, method = "bioclim", th = 0, variables_selected = "pca") expect_error(p <- tsne_sdm(i, variables_selected = "pca")) # Returns error since "pca" selected is only 1 var. expect_true(class(p) == "list") })