test_that("sdm_as_stars", { sa <- sdm_area(parana, 100000, crs=6933) |> add_predictors(bioc) |> select(c("bio1", "bio12")) expect_null(sdm_as_stars(sa)) expect_null(sdm_as_terra(sa)) expect_null(sdm_as_raster(sa)) oc <- occurrences_sdm(occ, crs=6933) suppressWarnings(oc <- join_area(oc, sa)) i <- input_sdm(oc, sa) #predictors expect_equal(class(sdm_as_stars(i)), "stars") i <- add_scenarios(i) #scenarios expect_equal(class(sdm_as_stars(i)), "list") expect_equal(names(sdm_as_stars(i)), "current") expect_equal(class(sdm_as_stars(i)$current), "stars") suppressWarnings(i <- pseudoabsences(i, method = "bioclim", n_set = 3)) ctrl <- caret::trainControl( method = "cv", number = 2, classProbs = TRUE, returnResamp = "all", summaryFunction = caret::twoClassSummary, savePredictions = "all" ) suppressWarnings(i <- train_sdm(i, algo = c("naive_bayes", "kknn"), ctrl = ctrl)) p <- predict_sdm(i, ensembles = FALSE) # predictions expect_equal(class(sdm_as_stars(p)), "stars") expect_true(all(c("cell_id", "presence", "pseudoabsence") %in% names(sdm_as_stars(p)))) p <- predict_sdm(i) # ensembles expect_equal(class(sdm_as_stars(p)), "stars") expect_true(all(c("cell_id", "mean_occ_prob") %in% names(sdm_as_stars(p)))) # what expect_equal(class(sdm_as_stars(p, what="predictors")), "stars") expect_equal(class(sdm_as_stars(p, what="scenarios")), "list") expect_equal(names(sdm_as_stars(p, what="scenarios")), "current") expect_equal(class(sdm_as_stars(p, what="scenarios")$current), "stars") expect_equal(class(sdm_as_stars(p, what="predictions")), "stars") expect_true(all(c("cell_id", "presence", "pseudoabsence") %in% names(sdm_as_stars(p, what="predictions")))) expect_equal(class(sdm_as_stars(p, what="ensembles")), "stars") expect_true(all(c("cell_id", "mean_occ_prob") %in% names(sdm_as_stars(p, what="ensembles")))) })