sa <- sdm_area(parana, 100000, crs=6933) |> add_predictors(bioc) |> select(c("bio1", "bio12")) |> add_scenarios() oc <- occurrences_sdm(occ, crs=6933) suppressWarnings(oc <- join_area(oc, sa)) i <- input_sdm(oc, sa) test_that("pseudoabsences - normal", { suppressWarnings(i2 <- pseudoabsences(i, method = "bioclim", n_set = 1)) expect_equal(n_pseudoabsences(i2), n_records(i2)) expect_equal("bioclim", pseudoabsence_method(i2)) expect_warning(i2 <- pseudoabsences(i2, method = "random", n_set = 1, variables_selected = c("bio1", "bio12"))) expect_equal("random", pseudoabsence_method(i2)) expect_equal(n_pseudoabsences(i2), n_records(i2)) suppressWarnings(i3 <- vif_predictors(i, th = 0.9)) i3 <- pseudoabsences(i3, method = "bioclim", variables_selected = "vif", n_set = 1) expect_equal("bioclim", pseudoabsence_method(i3)) i4 <- pca_predictors(i) i4 <- pseudoabsences(i4, method = "bioclim", variables_selected = "pca", n_set = 1) expect_equal("bioclim", pseudoabsence_method(i4)) n_set=3 i5 <- pseudoabsences(i, method = "random", n_set=n_set) expect_equal(n_set, pseudoabsence_data(i5)[[1]] |> length()) n_pa <- 100 expect_warning(i6 <- pseudoabsences(i, method = "random", n_pa=n_pa, n_set=1)) expect_true(n_pa == n_pseudoabsences(i6)) suppressWarnings(oc <- occurrences_sdm(rbind(occ, salm), crs=6933) |> join_area(sa)) i6 <- input_sdm(oc, sa) test <- capture_warnings(i6 <- pseudoabsences(i6, method = "random", n_pa=n_pa)) expect_equal(length(test), 2) test <- n_pseudoabsences(i6) expect_equal(names(test), species_names(i6)) expect_equal(length(as.numeric(test)), length(species_names(i6))) expect_equal(as.numeric(test), rep(n_pa, length(species_names(i6)))) expect_error(pseudoabsences(i, method = "random", n_pa=c(1,2,3))) })