sa <- sdm_area(parana, cell_size = 50000, crs = 6933) sa <- add_predictors(sa, bioc) sa <- dplyr::select(sa, c("bio1", "bio12")) i <- input_sdm(occurrences_sdm(occ, crs=6933), sa) i <- pseudoabsences(i, method="random", n_set = 3) suppressWarnings(i <- train_sdm(i, algo = c("naive_bayes", "kknn"))) test_that("pdp_sdm", { expect_error(pdp_sdm("i")) x <- pdp_sdm(i) expect_equal(class(x), c("gg", "ggplot")) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$data))) expect_equal(c("bio1", "bio12"), unique(x$data$variable)) expect_error(pdp_sdm(i, variables_selected = "bio01")) x <- pdp_sdm(i, variables_selected = "bio1") expect_equal(class(x), c("gg", "ggplot")) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$data))) expect_equal(c("bio1"), unique(x$data$variable)) expect_error(pdp_sdm(i, algo = "knn")) x <- pdp_sdm(i, algo = "kknn") expect_equal(class(x), c("gg", "ggplot")) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$data))) expect_equal(c("m1.2", "m2.2", "m3.2"), unique(x$data$id)) x <- get_pdp_sdm(i) expect_equal(class(x), "list") expect_equal(names(x), algorithms_used(i)) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$naive_bayes))) expect_error(get_pdp_sdm("i")) expect_equal(c("bio1", "bio12"), unique(x$naive_bayes$variable)) expect_error(get_pdp_sdm(i, variables_selected = "bio01")) x <- get_pdp_sdm(i, variables_selected = "bio1") expect_equal(class(x), c("list")) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$naive_bayes))) expect_equal(c("bio1"), unique(x$naive_bayes$variable)) expect_error(get_pdp_sdm(i, algo = "knn")) x <- get_pdp_sdm(i, algo = "kknn") expect_equal(class(x), c("list")) expect_true(all(c("id", "yhat", "variable", "value") %in% colnames(x$kknn))) expect_equal(c("m1.2", "m2.2", "m3.2"), unique(x$kknn$id)) })