set.seed(1) sa <- sdm_area(parana, 0.1) sa <- add_predictors(sa, bioc) sa <- select(sa, c("bio1", "bio12")) sa <- add_scenarios(sa) oc <- occurrences_sdm(occ, crs=6933) suppressWarnings(oc <- join_area(oc, sa)) i <- input_sdm(oc, sa) suppressWarnings(i <- pseudoabsences(i, method = "bioclim")) suppressWarnings(i <- train_sdm(i, algo=c("mda", "naive_bayes", "kknn"))) test_that("varImp_sdm works", { v <- varImp_sdm(i) expect_equal(names(v), species_names(i)) expect_equal(rownames(v[[1]]), get_predictor_names(i)) v <- varImp_sdm(i, id=paste0("m",1:10,".3")) expect_equal(names(v), species_names(i)) expect_equal(rownames(v[[1]]), get_predictor_names(i)) expect_error(varImp_sdm("i")) })