skip_if_not(is_pkg_installed("survey", reference_pkg = "cardx")) test_that("unstratified ard_continuous.survey.design() works", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) expect_error( ard_uni_svy_cont <- ard_continuous( dclus1, variables = api00, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) expect_invisible(cards::check_ard_structure(ard_uni_svy_cont)) # check the calculated stats are correct expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "mean") |> unlist(), survey::svymean(x = ~api00, dclus1, na.rm = TRUE)[1] |> unlist(), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "median") |> unlist(), survey::svyquantile(x = ~api00, dclus1, na.rm = TRUE, quantiles = 0.5)[[1]][1] |> unlist(), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "min") |> unlist(), dclus1$variables$api00 |> min(na.rm = TRUE), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "max") |> unlist(), dclus1$variables$api00 |> max(na.rm = TRUE), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "var") |> unlist(), survey::svyvar(x = ~api00, dclus1, na.rm = TRUE)[1] |> unlist(), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "sd") |> unlist(), survey::svyvar(x = ~api00, dclus1, na.rm = TRUE)[1] |> unlist() |> sqrt(), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "mean.std.error") |> unlist(), survey::svymean(x = ~api00, dclus1, na.rm = TRUE) |> survey::SE() |> unlist(), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "deff") |> unlist(), survey::svymean(x = ~api00, dclus1, na.rm = TRUE, deff = TRUE) |> as.data.frame() |> dplyr::pull(deff), ignore_attr = TRUE ) expect_equal( cards::get_ard_statistics(ard_uni_svy_cont, stat_name %in% "p75") |> unlist(), survey::svyquantile(x = ~api00, dclus1, na.rm = TRUE, quantiles = 0.75)[[1]][1] |> unlist(), ignore_attr = TRUE ) expect_snapshot(ard_uni_svy_cont) }) test_that("stratified ard_continuous.survey.design() works", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) expect_error( ard_svy_cont <- ard_continuous( dclus1, by = both, variables = api00, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) expect_invisible(cards::check_ard_structure(ard_svy_cont)) # check the calculated stats are correct expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "mean") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svymean, na.rm = TRUE) %>% { dplyr::pull(., api00) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "median") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svyquantile, na.rm = TRUE, quantiles = 0.5) %>% { dplyr::pull(., api00) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "min") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, dclus1$variables |> dplyr::summarise( .by = both, min = min(api00, na.rm = TRUE) ) |> dplyr::arrange(both) %>% { dplyr::pull(., min) |> as.list() |> set_names(.$both) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "max") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, dclus1$variables |> dplyr::summarise( .by = both, max = max(api00, na.rm = TRUE) ) |> dplyr::arrange(both) %>% { dplyr::pull(., max) |> as.list() |> set_names(.$both) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "var") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svyvar, na.rm = TRUE) %>% { dplyr::pull(., api00) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "sd") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svyvar, na.rm = TRUE) %>% { dplyr::pull(., api00) |> sqrt() |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "mean.std.error") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svymean, na.rm = TRUE) %>% { dplyr::pull(., se) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "deff") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svymean, na.rm = TRUE, deff = TRUE) %>% { dplyr::pull(., DEff.api00) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) expect_equal( ard_svy_cont |> dplyr::filter(stat_name %in% "p75") %>% { dplyr::pull(., stat) |> set_names(unlist(.$group1_level)) }, survey::svyby(~api00, by = ~both, dclus1, FUN = survey::svyquantile, na.rm = TRUE, quantiles = 0.75) %>% { dplyr::pull(., api00) |> as.list() |> set_names(rownames(.)) }, ignore_attr = TRUE ) }) test_that("ard_continuous.survey.design() NA handling", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1 |> dplyr::mutate(api00 = NA_real_), fpc = ~fpc) expect_error( ard_uni_NA_svy_cont <- ard_continuous( dclus1, variables = api00, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) # all results are NA, NaN, or NULL expect_true( ard_uni_NA_svy_cont$stat |> map_lgl(~ is.na(.x) || is.nan(.x) || is.null(.x)) |> all() ) expect_error( ard_NA_svy_cont <- ard_continuous( dclus1, variables = api00, by = both, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) # all results are NA, NaN, or NULL expect_true( ard_NA_svy_cont$stat |> map_lgl(~ is.na(.x) || is.nan(.x) || is.null(.x)) |> all() ) }) test_that("ard_continuous.survey.design() error handling", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1[1:20, ], fpc = ~fpc) # passing a character vector (some results are still calculable...i don't think we need to "fix" these) # and these "results" may vary across systems (all are nonsense), so just check # that code runs without error expect_error( ard_continuous( dclus1, variables = sname, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) expect_error( ard_continuous( dclus1, variables = sname, by = both, statistic = ~ c( "mean", "median", "min", "max", "sum", "var", "sd", "mean.std.error", "deff", "p75" ) ), NA ) }) test_that("ard_continuous.survey.design(fmt_fn)", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) expect_snapshot( ard_continuous( dclus1, variables = c(api99, api00), statistic = ~ c("mean", "median", "min", "max"), fmt_fn = list(api00 = list(mean = 2, median = "xx.xx", min = as.character)) ) |> dplyr::select(-warning, -error) |> as.data.frame() ) }) test_that("ard_continuous.survey.design(stat_label)", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) expect_snapshot( ard_continuous( dclus1, variables = c(api00, api99), statistic = ~ c("mean", "median", "min", "max"), stat_label = list(api00 = list(mean = "MeAn", median = "MEDian", min = "MINimum")) ) |> as.data.frame() ) }) test_that("ard_continuous.survey.design(by) unobserved levels/combinations", { data(api, package = "survey") dclus1 <- survey::svydesign( id = ~dnum, weights = ~pw, data = apiclus1 |> dplyr::mutate( both = factor(both, levels = c("Yes", "No", "Neither")), awards = ifelse(stype == "E", "Yes", as.character(awards)) ), fpc = ~fpc ) # The 'Neither' level is never observed, but included in the table expect_setequal( levels(dclus1$variables$both), ard_continuous( dclus1, variables = api00, by = both, statistic = ~ c("mean", "median", "min", "max") ) |> dplyr::pull(group1_level) |> map_chr(as.character) |> unique() ) # stype="E" is not observed with awards="No", but it should still appear in table with(dclus1$variables, table(stype, awards)) expect_equal( ard_continuous( dclus1, variables = api00, by = c(stype, awards), statistic = ~ c("mean", "median", "min", "max") ) |> dplyr::filter(map_chr(group1_level, as.character) %in% "E", group2_level %in% "No") |> dplyr::pull(stat), rep_len(list(NA_real_), 4L) ) }) # - test if function parameters can be used as variable names without error test_that("ard_continuous.survey.design() works when using generic names ", { data(api, package = "survey") dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) dclus2 <- dclus1 dclus2$variables <- dclus1$variables %>% dplyr::rename("variable_level" = cds, "variable" = stype, "median" = dnum, "p25" = snum) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = dnum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(variable_level, variable), by = median) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(dnum, snum), by = cds) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(median, p25), by = variable_level) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(dnum, snum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(median, p25), by = variable) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(dnum, cds), by = snum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(median, variable_level), by = p25) |> dplyr::select(stat) ) # rename vars dclus2$variables <- dclus1$variables %>% dplyr::rename("by" = cds, "statistic" = stype, "weights" = dnum, "p75" = snum) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = dnum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(by, statistic), by = weights) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(stype, dnum), by = cds) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(statistic, weights), by = by) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, dnum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(by, weights), by = statistic) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = snum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(by, statistic), by = p75) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, snum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(by, p75), by = statistic) |> dplyr::select(stat) ) # rename vars dclus2$variables <- dclus1$variables %>% dplyr::rename("mean" = cds, "sd" = stype, "var" = dnum, "sum" = snum) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = dnum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(mean, sd), by = var) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(stype, dnum), by = cds) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(sd, var), by = mean) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, dnum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(mean, var), by = sd) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = snum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(mean, sd), by = sum) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, snum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(mean, sum), by = sd) |> dplyr::select(stat) ) # rename vars again new_names <- c("deff", "min", "max", "mean.std.error") dclus2$variables <- dclus1$variables %>% dplyr::rename("deff" = cds, "min" = stype, "max" = dnum, "mean.std.error" = snum) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = dnum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(deff, min), by = max) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(stype, dnum), by = cds) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(min, max), by = deff) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, dnum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(deff, max), by = min) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, stype), by = snum) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(deff, min), by = mean.std.error) |> dplyr::select(stat) ) expect_equal( ard_continuous(dclus1, variables = c(cds, snum), by = stype) |> dplyr::select(stat), ard_continuous(dclus2, variables = c(deff, mean.std.error), by = min) |> dplyr::select(stat) ) })