test_that("ard_complex() works", { # we can replicate `ard_continuous()` for univariate analysis # using the `x` arg in the mean function expect_equal( ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(mean = \(x, ...) mean(x))) ) |> dplyr::select(all_ard_groups(), all_ard_variables(), stat), ard_continuous( ADSL, by = "ARM", variables = "AGE", statistic = ~ continuous_summary_fns("mean") ) |> dplyr::select(all_ard_groups(), all_ard_variables(), stat) ) # using the `data` and `variable` args in the mean function expect_equal( ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(mean = \(data, variable, ...) mean(data[[variable]]))) ) |> dplyr::select(all_ard_groups(), all_ard_variables(), stat), ard_continuous( ADSL, by = "ARM", variables = "AGE", statistic = ~ continuous_summary_fns("mean") ) |> dplyr::select(all_ard_groups(), all_ard_variables(), stat) ) # test a function using `data` and `full_data` arguments expect_error( { grand_mean <- function(data, full_data, variable, ...) { list( mean = mean(data[[variable]], na.rm = TRUE), grand_mean = mean(full_data[[variable]], na.rm = TRUE) ) } ard_grand_mean <- ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(means = grand_mean)) ) |> as.data.frame() |> dplyr::select(all_ard_groups(), all_ard_variables(), stat_name, stat) }, NA ) expect_equal( ard_grand_mean |> dplyr::filter(stat_name %in% "grand_mean") |> dplyr::pull(stat) |> unique() |> getElement(1L), mean(ADSL$AGE) ) expect_equal( ard_grand_mean |> as.data.frame() |> dplyr::filter(stat_name %in% "mean") |> dplyr::mutate(across(c(group1_level, stat), unlist)) |> dplyr::select(group1_level, stat), ADSL |> dplyr::summarise( .by = "ARM", stat = mean(AGE) ) |> dplyr::rename(group1_level = ARM) |> as.data.frame(), ignore_attr = TRUE ) }) test_that("ard_complex() messaging", { # correct messaging when BMIBL doesn't have any summary fns expect_snapshot( error = TRUE, ard_complex( ADSL, by = "ARM", variables = c("AGE", "BMIBL"), statistic = list(AGE = list(mean = \(x, ...) mean(x))) ) ) }) test_that("ard_complex() with grouped data works", { expect_equal( ADSL |> dplyr::group_by(ARM) |> ard_complex( variables = c("AGE", "BMIBL"), statistic = ~ list(mean = \(x, ...) mean(x)) ), ard_complex( data = ADSL, by = "ARM", variables = c("AGE", "BMIBL"), statistic = ~ list(mean = \(x, ...) mean(x)) ) ) }) test_that("ard_complex() follows ard structure", { expect_silent( ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(mean = \(x, ...) mean(x))) ) |> check_ard_structure(method = FALSE) ) }) test_that("ard_complex() errors with incorrect factor columns", { # Check error when factors have no levels expect_snapshot( error = TRUE, mtcars |> dplyr::mutate(am = factor(am, levels = character(0))) |> ard_complex( by = "am", variables = "mpg", statistic = list(mpg = list(mean = \(x, ...) mean(x))) ) ) # Check error when factor has NA level expect_snapshot( error = TRUE, mtcars |> dplyr::mutate(am = factor(am, levels = c(0, 1, NA), exclude = NULL)) |> ard_complex( by = "am", variables = "mpg", statistic = list(mpg = list(mean = \(x, ...) mean(x))) ) ) }) test_that("ard_complex() with `as_cards_fn()` inputs", { ttest_works <- as_cards_fn( \(x, data, ...) t.test(x ~ data$am)[c("statistic", "p.value")], stat_names = c("statistic", "p.value") ) ttest_error <- as_cards_fn( \(x, data, ...) { t.test(x ~ data$am)[c("statistic", "p.value")] stop("Intentional Error") }, stat_names = c("statistic", "p.value") ) # the result is the same when there is no error expect_equal( ard_complex(mtcars, variables = mpg, statistic = ~ list(ttest = ttest_works)), ard_complex(mtcars, variables = mpg, statistic = ~ list(ttest = \(x, data, ...) t.test(x ~ data$am)[c("statistic", "p.value")])) ) # when there is an error, we get the same structure back expect_equal( ard_complex(mtcars, variables = mpg, statistic = ~ list(ttest = ttest_error)) |> dplyr::pull("stat_name"), ard_complex(mtcars, variables = mpg, statistic = ~ list(ttest = \(x, data, ...) t.test(x ~ data$am)[c("statistic", "p.value")])) |> dplyr::pull("stat_name") ) })