test_that("check plot.calib_msm output (j = 1, s = 0)", { ## Extract relevant predicted risks from tps0 tp.pred <- dplyr::select(dplyr::filter(tps0, j == 1), any_of(paste("pstate", 1:6, sep = ""))) ## Calculate observed event probabilities dat.calib.blr <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=1, s=0, t = 1826, tp.pred = tp.pred, calib.type = "blr", curve.type = "rcs", rcs.nk = 3, w.covs = c("year", "agecl", "proph", "match")) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.blr, combine = FALSE, nrow = 2, ncol = 3) expect_length(plot.object, 6) expect_type(plot.object, "list") ## Plot calibration plots and run tests with marginal density plots plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3, marg.density = TRUE, marg.density.size = 1) expect_length(plot.object, 6) expect_equal(class(plot.object), c("gtable", "gTree", "grob", "gDesc")) ## Plot calibration plots and run tests with marginal rug plots plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3, marg.rug = TRUE) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) ## Add titles plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3, marg.rug = TRUE, titles = paste("eggs", 1:6), axis.titles.text.x = paste("eggs.x", 1:6), axis.titles.text.y = paste("eggs.y", 1:6)) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) }) test_that("check plot.calib_msm output (j = 1, s = 0) with CI", { ## Extract relevant predicted risks from tps0 tp.pred <- dplyr::select(dplyr::filter(tps0, j == 1), any_of(paste("pstate", 1:6, sep = ""))) ## Calculate observed event probabilities dat.calib.blr <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=1, s=0, t = 1826, tp.pred = tp.pred, calib.type = "blr", curve.type = "rcs", rcs.nk = 3, w.covs = c("year", "agecl", "proph", "match"), CI = 95, CI.R.boot = 5) ## Plot calibration plots and run tests without marginal density plots plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.blr, combine = FALSE, nrow = 2, ncol = 3) expect_length(plot.object, 6) expect_type(plot.object, "list") ## Plot calibration plots and run tests with marginal density plots plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3, marg.density = TRUE, marg.density.size = 1) expect_equal(class(plot.object), c("gtable", "gTree", "grob", "gDesc")) ## Plot calibration plots and run tests with marginal rug plots plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3, marg.rug = TRUE) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) }) test_that("check plot.calib_msm output (j = 3, s = 100)", { ## Extract relevant predicted risks from tps0 tp.pred <- dplyr::select(dplyr::filter(tps100, j == 3), any_of(paste("pstate", 1:6, sep = ""))) ## Calculate observed event probabilities dat.calib.blr <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=3, s=100, t = 1826, tp.pred = tp.pred, calib.type = "blr", curve.type = "rcs", rcs.nk = 3, w.covs = c("year", "agecl", "proph", "match")) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.blr, combine = FALSE, nrow = 2, ncol = 3) expect_length(plot.object, 4) expect_type(plot.object, "list") }) test_that("check plot.calib_pv output (j = 1, s = 0)", { ## Reduce to 50 individuals # Extract the predicted transition probabilities out of state j = 1 for first 50 individuals tp.pred <- tps0 |> dplyr::filter(id %in% 1:50) |> dplyr::filter(j == 1) |> dplyr::select(any_of(paste("pstate", 1:6, sep = ""))) # Reduce ebmtcal to first 50 individuals ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50) # Reduce msebmtcal.cmprsk to first 100 individuals msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50) ## Calculate observed event probabilities dat.calib.pv <- suppressWarnings(calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=1, s=0, t = 1826, tp.pred = tp.pred, calib.type = "pv", curve.type = "rcs", rcs.nk = 3)) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.pv, combine = TRUE) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.pv, combine = FALSE) expect_length(plot.object, 6) expect_type(plot.object, "list") }) test_that("check plot.calib_pv output (j = 1, s = 0) with CI", { ## Reduce to 50 individuals # Extract the predicted transition probabilities out of state j = 1 for first 50 individuals tp.pred <- tps0 |> dplyr::filter(id %in% 1:50) |> dplyr::filter(j == 1) |> dplyr::select(any_of(paste("pstate", 1:6, sep = ""))) # Reduce ebmtcal to first 50 individuals ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50) # Reduce msebmtcal.cmprsk to first 100 individuals msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50) ## Calculate observed event probabilities dat.calib.pv <- suppressWarnings(calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=1, s=0, t = 1826, tp.pred = tp.pred, calib.type = "pv", curve.type = "rcs", rcs.nk = 3, CI = 95, CI.type = "parametric")) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.pv, combine = TRUE) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.pv, combine = FALSE) expect_length(plot.object, 6) expect_type(plot.object, "list") }) test_that("check plot.calib_pv output (j = 3, s = 100) with CI", { ## Reduce to 500 individuals # Extract the predicted transition probabilities out of state j = 1 for first 500 individuals tp.pred <- tps0 |> dplyr::filter(id %in% 1:500) |> dplyr::filter(j == 3) |> dplyr::select(any_of(paste("pstate", 1:6, sep = ""))) # Reduce ebmtcal to first 500 individuals ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:500) # Reduce msebmtcal.cmprsk to first 100 individuals msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:500) ## Calculate observed event probabilities dat.calib.pv <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=3, s=100, t = 1826, tp.pred = tp.pred, calib.type = "pv", curve.type = "rcs", rcs.nk = 3, CI = 95, CI.type = "parametric") ## Plot calibration plots and run tests plot.object <- plot(dat.calib.pv, combine = TRUE) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.pv, combine = FALSE) expect_length(plot.object, 4) expect_type(plot.object, "list") }) test_that("check plot.calib_mlr output (j = 1, s = 0)", { ## Reduce to 500 individuals # Extract the predicted transition probabilities out of state j = 1 for first 500 individuals tp.pred <- tps0 |> dplyr::filter(id %in% 1:500) |> dplyr::filter(j == 1) |> dplyr::select(any_of(paste("pstate", 1:6, sep = ""))) # Reduce ebmtcal to first 500 individuals ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:500) # Reduce msebmtcal.cmprsk to first 100 individuals msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:500) # ## Extract relevant predicted risks from tps0 # tp.pred <- dplyr::select(dplyr::filter(tps100, j == 3), dplyr::any_of(paste("pstate", 1:6, sep = ""))) ## Calculate observed event probabilities suppressWarnings( dat.calib.mlr <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=1, s=0, t = 1826, tp.pred = tp.pred, calib.type = "mlr", w.covs = c("year", "agecl", "proph", "match")) ) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.mlr, combine = TRUE, nrow = 2, ncol = 3) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.mlr, combine = FALSE, nrow = 2, ncol = 3) expect_length(plot.object, 6) expect_type(plot.object, "list") }) test_that("check plot.calib_mlr output (j = 3, s = 100)", { ## Extract relevant predicted risks from tps0 tp.pred <- dplyr::select(dplyr::filter(tps100, j == 3), dplyr::any_of(paste("pstate", 1:6, sep = ""))) ## Calculate observed event probabilities suppressWarnings( dat.calib.mlr <- calib_msm(data.ms = msebmtcal, data.raw = ebmtcal, j=3, s=100, t = 1826, tp.pred = tp.pred, calib.type = "mlr", w.covs = c("year", "agecl", "proph", "match")) ) ## Plot calibration plots and run tests plot.object <- plot(dat.calib.mlr, combine = TRUE, nrow = 2, ncol = 3) expect_equal(class(plot.object), c("gg", "ggplot", "ggarrange")) plot.object <- plot(dat.calib.mlr, combine = FALSE, nrow = 2, ncol = 3) expect_length(plot.object, 4) expect_type(plot.object, "list") })