test_that("randomForest + predict() works", { skip_on_cran() skip_if_not_installed("randomForest") suppressPackageStartupMessages(library(randomForest)) randomForest_fit <- randomForest(mpg ~ ., data = mtcars) x <- axe_call(randomForest_fit) expect_equal(x$call, call("dummy_call")) x <- butcher(randomForest_fit) expect_equal(predict(x), predict(randomForest_fit)) iris.rf <- randomForest(Species ~ ., data = iris, importance = TRUE, proximity = TRUE, localImp = TRUE, keep.inbag = TRUE) x <- axe_call(iris.rf) expect_equal(x$call, call("dummy_call")) x <- axe_ctrl(iris.rf) expect_equal(x$inbag, matrix(NA)) x <- axe_env(iris.rf) expect_equal(attr(x$terms, ".Environment"), rlang::base_env()) x <- butcher(iris.rf) expect_equal(predict(x, newdata = iris[1:3, ]), structure(c(`1` = 1L, `2` = 1L, `3` = 1L), .Label = c("setosa", "versicolor", "virginica"), class = "factor")) })